๋ณธ๋ฌธ์œผ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
-
skycave's Blog
skycave's Blog
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
๋‹ซ๊ธฐ

๊ฒ€์ƒ‰

AI

[AI Paper] ๐Ÿ“„ Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

By skycave
2026๋…„ 01์›” 25์ผ 9 Min Read
0

๐Ÿ“„ Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

๐Ÿ“‹ ๋ฉ”ํƒ€ ์ •๋ณด

ํ•ญ๋ชฉ ๋‚ด์šฉ
์ €์ž Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V. Le, Denny Zhou
์†Œ์† Google Brain (ํ˜„ Google DeepMind)
๋ฐœํ‘œ์ฒ˜ NeurIPS 2022 (Advances in Neural Information Processing Systems 35)
๋ฐœํ‘œ ์—ฐ๋„ 2022
arXiv arXiv:2201.11903
NeurIPS Proceedings
์ธ์šฉ์ˆ˜ 10,000+ (2024๋…„ ๊ธฐ์ค€, ํ”„๋กฌํ”„ํŒ… ๋ถ„์•ผ ์ตœ๋‹ค ์ธ์šฉ ๋…ผ๋ฌธ ์ค‘ ํ•˜๋‚˜)

๐ŸŽฏ ํ•œ์ค„ ์š”์•ฝ

๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์— ์ค‘๊ฐ„ ์ถ”๋ก  ๋‹จ๊ณ„(chain of thought)๋ฅผ ํฌํ•จํ•œ few-shot ์˜ˆ์‹œ๋ฅผ ์ œ๊ณตํ•˜๋ฉด, ๋ณต์žกํ•œ ์‚ฐ์ˆ , ์ƒ์‹, ๊ธฐํ˜ธ ์ถ”๋ก  ๊ณผ์ œ์—์„œ ์„ฑ๋Šฅ์ด ๋น„์•ฝ์ ์œผ๋กœ ํ–ฅ์ƒ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์ตœ์ดˆ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ์ž…์ฆํ•œ ํš๊ธฐ์  ์—ฐ๊ตฌ.


๐Ÿ” ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ

๊ธฐ์กด ๋ฌธ์ œ์ 

  1. ์Šค์ผ€์ผ๋ง์˜ ํ•œ๊ณ„: ์–ธ์–ด ๋ชจ๋ธ์˜ ํฌ๊ธฐ๋ฅผ ํ‚ค์›Œ๋„ ์‚ฐ์ˆ  ์ถ”๋ก , ์ƒ์‹ ์ถ”๋ก , ๊ธฐํ˜ธ ์ถ”๋ก  ๊ฐ™์€ ๋ณต์žกํ•œ ๋‹ค๋‹จ๊ณ„ ์ถ”๋ก (multi-step reasoning) ๊ณผ์ œ์—์„œ๋Š” ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ๋ฏธ๋ฏธํ–ˆ์Œ

  2. ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ…์˜ ์ œ์•ฝ: ๊ธฐ์กด์˜ few-shot ํ”„๋กฌํ”„ํŒ…์€ ์ž…๋ ฅ-์ถœ๋ ฅ ์Œ๋งŒ ์ œ๊ณตํ•˜์—ฌ, ๋ชจ๋ธ์ด ์ค‘๊ฐ„ ์ถ”๋ก  ๊ณผ์ • ์—†์ด ๋ฐ”๋กœ ๋‹ต์„ ์ƒ์„ฑํ•˜๋„๋ก ์œ ๋„

  3. Flat Scaling Curve ๋ฌธ์ œ: ๋งŽ์€ ์ถ”๋ก  ๊ณผ์ œ์—์„œ ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ํ‚ค์›Œ๋„ ์„ฑ๋Šฅ์ด ๊ฑฐ์˜ ํ–ฅ์ƒ๋˜์ง€ ์•Š๋Š” ํ˜„์ƒ์ด ์ง€์†

  4. Fine-tuning์˜ ๋น„์šฉ: ์ถ”๋ก  ๋Šฅ๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ•๊ณผ ํŒŒ์ธํŠœ๋‹์€ ๋ง‰๋Œ€ํ•œ ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ์†Œ์š”

์—ฐ๊ตฌ ๋™๊ธฐ

  • ์ธ๊ฐ„์€ ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ’€ ๋•Œ ๋‹จ๊ณ„๋ณ„๋กœ ์‚ฌ๊ณ ๋ฅผ ๋ถ„ํ•ดํ•˜์—ฌ ํ•ด๊ฒฐํ•จ
  • ์ด๋Ÿฌํ•œ ์ธ๊ฐ„์˜ ์‚ฌ๊ณ  ๊ณผ์ •์„ LLM์—๋„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ?
  • ํ•ต์‹ฌ ์งˆ๋ฌธ: “ํ”„๋กฌํ”„ํŠธ์— ์ถ”๋ก  ๋‹จ๊ณ„๋ฅผ ํฌํ•จ์‹œํ‚ค๋ฉด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ์„๊นŒ?”

๐Ÿ’ก ํ•ต์‹ฌ ์•„์ด๋””์–ด

Chain-of-Thought (CoT)์˜ ์ •์˜

Chain-of-Thought(์‚ฌ๊ณ ์˜ ์—ฐ์‡„)๋ž€ ์ตœ์ข… ๋‹ต์— ๋„๋‹ฌํ•˜๊ธฐ๊นŒ์ง€์˜ ์ผ๋ จ์˜ ์ค‘๊ฐ„ ์ถ”๋ก  ๋‹จ๊ณ„(intermediate reasoning steps)๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

๋ฌธ์ œ โ†’ ์ถ”๋ก  ๋‹จ๊ณ„ 1 โ†’ ์ถ”๋ก  ๋‹จ๊ณ„ 2 โ†’ ... โ†’ ์ถ”๋ก  ๋‹จ๊ณ„ n โ†’ ์ตœ์ข… ๋‹ต

ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ… vs CoT ํ”„๋กฌํ”„ํŒ…

ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ… (Standard Prompting):

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls.
   Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11.

Chain-of-Thought ํ”„๋กฌํ”„ํŒ…:

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls.
   Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls.
   5 + 6 = 11. The answer is 11.

CoT์˜ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ํŠน์„ฑ

  1. ๋ณต์žกํ•œ ๋ฌธ์ œ ๋ถ„ํ•ด: ๋‹ค๋‹จ๊ณ„ ๋ฌธ์ œ๋ฅผ ์ค‘๊ฐ„ ๋‹จ๊ณ„๋“ค๋กœ ๋ถ„ํ•ดํ•˜์—ฌ, ๊ฐ ๋‹จ๊ณ„์— ๋” ๋งŽ์€ ๊ณ„์‚ฐ ์ž์› ํ• ๋‹น ๊ฐ€๋Šฅ

  2. ํ•ด์„ ๊ฐ€๋Šฅํ•œ ์ถ”๋ก  ๊ณผ์ •: ๋ชจ๋ธ์ด ํŠน์ • ๋‹ต์— ๋„๋‹ฌํ•œ ๊ณผ์ •์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์–ด ๋””๋ฒ„๊น…๊ณผ ํ•ด์„์ด ์šฉ์ด

  3. ๋ฒ”์šฉ์  ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ: ์ˆ˜ํ•™, ์ƒ์‹, ๊ธฐํ˜ธ ์ถ”๋ก  ๋“ฑ ์ธ๊ฐ„์ด ์–ธ์–ด๋กœ ํ’€ ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ํƒœ์Šคํฌ์— ์ ์šฉ ๊ฐ€๋Šฅ

CoT๊ฐ€ ํšจ๊ณผ์ ์ธ ์ด์œ 

์š”์ธ ์„ค๋ช…
์ค‘๊ฐ„ ๊ณ„์‚ฐ ๊ณต๊ฐ„ ๋ชจ๋ธ์ด ์ค‘๊ฐ„ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Œ
๋ฌธ์ œ ๋ถ„ํ•ด ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ๊ด€๋ฆฌ ๊ฐ€๋Šฅํ•œ ํ•˜์œ„ ๋ฌธ์ œ๋กœ ๋ถ„ํ•ด
์ธ๊ฐ„ ์‚ฌ๊ณ  ๋ชจ๋ฐฉ ์ธ๊ฐ„์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•œ ์ ‘๊ทผ
์˜ค๋ฅ˜ ์ถ”์  ๊ฐ€๋Šฅ ์ถ”๋ก  ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ์˜ค๋ฅ˜ ์›์ธ ํŒŒ์•… ๊ฐ€๋Šฅ

๐Ÿ—๏ธ ๋ฐฉ๋ฒ•๋ก 

์‹คํ—˜ ์„ค์ •

์‚ฌ์šฉ๋œ ์–ธ์–ด ๋ชจ๋ธ

๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ํฌ๊ธฐ ๋น„๊ณ 
GPT-3 (InstructGPT) 350M, 1.3B, 6.7B, 175B OpenAI
LaMDA 422M, 2B, 8B, 68B, 137B Google
PaLM 8B, 62B, 540B Google (์ฃผ์š” ์‹คํ—˜)
UL2 20B Google
Codex code-davinci-002 OpenAI

ํ”„๋กฌํ”„ํŠธ ๊ตฌ์„ฑ ๋ฐฉ๋ฒ•

[Few-shot exemplars with chain-of-thought] (๋ณดํ†ต 8๊ฐœ)
+ [Test question]
โ†’ [Model generates chain-of-thought + answer]

CoT ํ”„๋กฌํ”„ํŠธ ๊ตฌ์กฐ

def chain_of_thought_prompting(question, cot_exemplars, model):
    """
    Chain-of-Thought ํ”„๋กฌํ”„ํŒ… ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Args:
        question: ํ’€์–ด์•ผ ํ•  ๋ฌธ์ œ
        cot_exemplars: CoT๊ฐ€ ํฌํ•จ๋œ few-shot ์˜ˆ์‹œ๋“ค (8๊ฐœ ์‚ฌ์šฉ)
        model: ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ

    Returns:
        answer: ์ตœ์ข… ๋‹ต๋ณ€
        reasoning_chain: ์ถ”๋ก  ๊ณผ์ •
    """

    # 1. ํ”„๋กฌํ”„ํŠธ ๊ตฌ์„ฑ
    prompt = ""
    for exemplar in cot_exemplars:
        prompt += f"Q: {exemplar.question}\n"
        prompt += f"A: {exemplar.chain_of_thought}. "
        prompt += f"The answer is {exemplar.answer}.\n\n"

    prompt += f"Q: {question}\nA:"

    # 2. ๋ชจ๋ธ ์ถ”๋ก  (greedy decoding)
    output = model.generate(prompt, temperature=0)

    # 3. ๋‹ต๋ณ€ ์ถ”์ถœ
    reasoning_chain = extract_reasoning(output)
    answer = extract_final_answer(output)

    return answer, reasoning_chain

๊ตฌ์ฒด์ ์ธ ์˜ˆ์‹œ๋“ค

1. ์‚ฐ์ˆ  ์ถ”๋ก  ์˜ˆ์‹œ (GSM8K)

Q: John has 10 apples. He gives away 4 and then receives 5 more.
   How many apples does he have?

A: John starts with 10 apples. He gives away 4, so 10 - 4 = 6.
   He then receives 5 more apples, so 6 + 5 = 11.
   The answer is 11.

2. ์ƒ์‹ ์ถ”๋ก  ์˜ˆ์‹œ (StrategyQA)

Q: Would a pear sink in water?

A: A pear has a density of about 0.59 g/cmยณ, which is less than
   the density of water (1 g/cmยณ). Objects with density less
   than water float. The answer is no.

3. ๊ธฐํ˜ธ ์ถ”๋ก  ์˜ˆ์‹œ (Last Letter Concatenation)

Q: Take the last letters of the words in "Elon Musk" and
   concatenate them.

A: The last letter of "Elon" is "n". The last letter of "Musk"
   is "k". Concatenating them is "nk". The answer is nk.

Ablation Study์—์„œ ๋น„๊ตํ•œ ๋ณ€ํ˜•๋“ค

๋ณ€ํ˜• ์„ค๋ช… ํšจ๊ณผ
Equation only ์ž์—ฐ์–ด ์—†์ด ์ˆ˜ํ•™ ๋ฐฉ์ •์‹๋งŒ ํšจ๊ณผ ์ œํ•œ์ 
Variable compute “…”์œผ๋กœ ํ† ํฐ ์ˆ˜๋งŒ ์ฆ๊ฐ€ ํšจ๊ณผ ์—†์Œ
CoT after answer ๋‹ต ๋จผ์ €, ์ถ”๋ก  ๋‚˜์ค‘ ํšจ๊ณผ ์—†์Œ

๊ฒฐ๋ก : ์ž์—ฐ์–ด๋กœ ๋œ ์ค‘๊ฐ„ ์ถ”๋ก  ๋‹จ๊ณ„๊ฐ€ ํ•ต์‹ฌ์ด๋ฉฐ, ๋‹จ์ˆœํžˆ ํ† ํฐ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๊ฑฐ๋‚˜ ์ˆœ์„œ๋ฅผ ๋ฐ”๊พธ๋Š” ๊ฒƒ์€ ํšจ๊ณผ๊ฐ€ ์—†์Œ


๐Ÿ“Š ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹

1. ์‚ฐ์ˆ  ์ถ”๋ก  (Arithmetic Reasoning)

  • GSM8K: ์ดˆ๋“ฑํ•™๊ต ์ˆ˜์ค€ ์ˆ˜ํ•™ ์›Œ๋“œ ๋ฌธ์ œ (8.5K ๋ฌธ์ œ)
  • SVAMP: ๋‹ค์–‘ํ•œ ์ˆ˜ํ•™ ์›Œ๋“œ ๋ฌธ์ œ
  • ASDiv: ๋‹ค์–‘ํ•œ ๋‚œ์ด๋„์˜ ์ˆ˜ํ•™ ๋ฌธ์ œ
  • AQuA: ๋Œ€์ˆ˜ํ•™ ๋ฌธ์ œ
  • MAWPS: ์ˆ˜ํ•™ ์›Œ๋“œ ๋ฌธ์ œ ๋ชจ์Œ (SingleOp, SingleEq, AddSub, MultiArith)

2. ์ƒ์‹ ์ถ”๋ก  (Commonsense Reasoning)

  • CommonsenseQA (CSQA): ์ƒ์‹ ๊ธฐ๋ฐ˜ ๊ฐ๊ด€์‹ ๋ฌธ์ œ
  • StrategyQA: ๋‹ค๋‹จ๊ณ„ ์ „๋žต์  ์ถ”๋ก ์ด ํ•„์š”ํ•œ ์˜ˆ/์•„๋‹ˆ์˜ค ๋ฌธ์ œ
  • Date Understanding: ๋‚ ์งœ ๊ด€๋ จ ์ถ”๋ก  (BIG-bench)
  • Sports Understanding: ์Šคํฌ์ธ  ๊ด€๋ จ ์ถ”๋ก  (BIG-bench)
  • SayCan: ๋กœ๋ด‡ ์•ก์…˜ ๋งคํ•‘

3. ๊ธฐํ˜ธ ์ถ”๋ก  (Symbolic Reasoning)

  • Last Letter Concatenation: ๋‹จ์–ด๋“ค์˜ ๋งˆ์ง€๋ง‰ ๊ธ€์ž ์—ฐ๊ฒฐ
  • Coin Flip: ๋™์ „ ๋’ค์ง‘๊ธฐ ์ƒํƒœ ์ถ”์ 

์ฃผ์š” ์‹คํ—˜ ๊ฒฐ๊ณผ

1. ์‚ฐ์ˆ  ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ (PaLM 540B)

๋ฒค์น˜๋งˆํฌ ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ… CoT ํ”„๋กฌํ”„ํŒ… ํ–ฅ์ƒํญ
GSM8K 17.9% 56.9% +39.0%p
SVAMP 79.0% 86.6% +7.6%p
ASDiv 73.9% 82.0% +8.1%p
MAWPS 91.4% 94.1% +2.7%p

ํ•ต์‹ฌ ๋ฐœ๊ฒฌ: GSM8K์—์„œ CoT + PaLM 540B๊ฐ€ 56.9%๋ฅผ ๋‹ฌ์„ฑํ•˜์—ฌ, fine-tuned GPT-3 + verifier (55%)๋ฅผ ๋Šฅ๊ฐ€ํ•˜๋ฉฐ SOTA ๋‹ฌ์„ฑ

2. ์ƒ์‹ ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ

๋ฒค์น˜๋งˆํฌ ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ… CoT ํ”„๋กฌํ”„ํŒ… ๋น„๊ณ 
StrategyQA ~65% 75.6% ๊ธฐ์กด SOTA 69.4% ๋Šฅ๊ฐ€
Sports Understanding 84% 95% ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€(84%) ๋Šฅ๊ฐ€
Date Understanding – 67.5% ๋ณต์žกํ•œ ๋‚ ์งœ ์ถ”๋ก 
CommonsenseQA ~80% ~80% ๋ฏธ๋ฏธํ•œ ํ–ฅ์ƒ

3. ๊ธฐํ˜ธ ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ

๊ณผ์ œ ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ… CoT ํ”„๋กฌํ”„ํŒ…
Last Letter Concat (4 words) ~0% 58.0%
Coin Flip (4 flips) ~0% 91.4%

์ค‘์š” ๋ฐœ๊ฒฌ: CoT๋Š” OOD(Out-of-Distribution) ๊ธธ์ด ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ๋„ ๋ณด์—ฌ์คŒ (์˜ˆ: 2-word ์˜ˆ์‹œ๋กœ 4-word ๋ฌธ์ œ ํ•ด๊ฒฐ)

๋ชจ๋ธ ํฌ๊ธฐ๋ณ„ ์„ฑ๋Šฅ (Emergent Ability)

๋ชจ๋ธ ํฌ๊ธฐ        | ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ… | CoT ํ”„๋กฌํ”„ํŒ…  | ํšจ๊ณผ
----------------|-------------|--------------|------
~1B ํŒŒ๋ผ๋ฏธํ„ฐ     | ๋‚ฎ์Œ         | ๋‚ฎ์Œ/๋” ๋‚ฎ์Œ  | ์—ญํšจ๊ณผ ๊ฐ€๋Šฅ
~10B ํŒŒ๋ผ๋ฏธํ„ฐ    | ์ค‘๊ฐ„         | ์ค‘๊ฐ„         | ๋ฏธ๋ฏธํ•จ
~100B+ ํŒŒ๋ผ๋ฏธํ„ฐ  | ์ค‘๊ฐ„         | ๋†’์Œ โฌ†๏ธ      | ํฐ ํšจ๊ณผ

ํ•ต์‹ฌ ๋ฐœ๊ฒฌ: CoT๋Š” ์•ฝ 100B ํŒŒ๋ผ๋ฏธํ„ฐ ์ด์ƒ์˜ ๋ชจ๋ธ์—์„œ๋งŒ ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ์ฐฝ๋ฐœ์  ๋Šฅ๋ ฅ(emergent ability)

Self-Consistency์™€ ๊ฒฐํ•ฉ ์‹œ ๊ฒฐ๊ณผ

๋ฒค์น˜๋งˆํฌ CoT๋งŒ CoT + Self-Consistency ์ถ”๊ฐ€ ํ–ฅ์ƒ
GSM8K 56.9% 74.4% +17.5%p
SVAMP 86.6% 93.0% +6.4%p
StrategyQA 75.6% 82.0% +6.4%p

์˜ค๋ฅ˜ ๋ถ„์„ (PaLM 62B, GSM8K)

์˜ค๋ฅ˜ ์œ ํ˜• ๋น„์œจ ์„ค๋ช…
๊ฑฐ์˜ ์ •ํ™• 46% ์‚ฌ์†Œํ•œ ๊ณ„์‚ฐ ์‹ค์ˆ˜
์˜๋ฏธ ์ดํ•ด ์˜ค๋ฅ˜ 27% ๋ฌธ์ œ ์ดํ•ด ์‹คํŒจ
์ผ๊ด€์„ฑ ์˜ค๋ฅ˜ 27% ์ถ”๋ก  ์ค‘ ๋…ผ๋ฆฌ์  ๋ถˆ์ผ์น˜

540B๋กœ ์Šค์ผ€์ผ์—… ์‹œ 62B์˜ “ํ•œ ๋‹จ๊ณ„ ๋ˆ„๋ฝ”๊ณผ “์˜๋ฏธ ์ดํ•ด” ์˜ค๋ฅ˜ ๋Œ€๋ถ€๋ถ„ ํ•ด๊ฒฐ๋จ


๐Ÿ’ช ๊ฐ•์  ๋ฐ ๊ธฐ์—ฌ

1. ๋ฐฉ๋ฒ•๋ก ์  ๋‹จ์ˆœ์„ฑ

  • ํŒŒ์ธํŠœ๋‹ ๋ถˆํ•„์š”: ๊ธฐ์กด ๋ชจ๋ธ์„ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๋ฉฐ ํ”„๋กฌํ”„ํŠธ๋งŒ ๋ณ€๊ฒฝ
  • ์ตœ์†Œํ•œ์˜ ์˜ˆ์‹œ: ๋‹จ 8๊ฐœ์˜ CoT ์˜ˆ์‹œ๋งŒ์œผ๋กœ SOTA ๋‹ฌ์„ฑ
  • ์ถ”๊ฐ€ ํ•™์Šต ๋ฐ์ดํ„ฐ ๋ถˆํ•„์š”: ๋Œ€๊ทœ๋ชจ rationale ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ์—†์ด ์ ์šฉ ๊ฐ€๋Šฅ

2. ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ ํ–ฅ์ƒ

  • GSM8K์—์„œ 3๋ฐฐ ์ด์ƒ ์„ฑ๋Šฅ ํ–ฅ์ƒ (17.9% โ†’ 56.9%)
  • ๊ธฐ์กด ํŒŒ์ธํŠœ๋‹ + verifier ๋ฐฉ์‹์˜ SOTA (55%)๋ฅผ ๋Šฅ๊ฐ€
  • ์—ฌ๋Ÿฌ ๋ฒค์น˜๋งˆํฌ์—์„œ ์ƒˆ๋กœ์šด SOTA ๋‹ฌ์„ฑ

3. ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ํ–ฅ์ƒ

  • ๋ชจ๋ธ์˜ ์ถ”๋ก  ๊ณผ์ •์„ ํˆฌ๋ช…ํ•˜๊ฒŒ ๊ด€์ฐฐ ๊ฐ€๋Šฅ
  • ์˜ค๋ฅ˜ ๋””๋ฒ„๊น… ๋ฐ ๊ฐœ์„  ๋ฐฉํ–ฅ ๋„์ถœ ์šฉ์ด
  • ๋ธ”๋ž™๋ฐ•์Šค ๋ฌธ์ œ ์ผ๋ถ€ ํ•ด์†Œ

4. ๋ฒ”์šฉ์  ์ ์šฉ์„ฑ

  • ์‚ฐ์ˆ , ์ƒ์‹, ๊ธฐํ˜ธ ์ถ”๋ก  ๋“ฑ ๋‹ค์–‘ํ•œ ํƒœ์Šคํฌ์— ์ ์šฉ ๊ฐ€๋Šฅ
  • ์ธ๊ฐ„์ด ์–ธ์–ด๋กœ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ๋ฌธ์ œ์— ํ™•์žฅ ๊ฐ€๋Šฅ
  • ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์— ์ผ๋ฐ˜ํ™”

5. ํ•™์ˆ ์  ๊ธฐ์—ฌ

  • ์ƒˆ๋กœ์šด ํ”„๋กฌํ”„ํŒ… ํŒจ๋Ÿฌ๋‹ค์ž„ ์ œ์‹œ
  • Emergent Ability ๋ฐœ๊ฒฌ: ๋ชจ๋ธ ๊ทœ๋ชจ์— ๋”ฐ๋ฅธ ์ถ”๋ก  ๋Šฅ๋ ฅ์˜ ์ฐฝ๋ฐœ์  ์ถœํ˜„ ์ž…์ฆ
  • ํ›„์† ์—ฐ๊ตฌ์˜ ๊ธฐ๋ฐ˜: Zero-shot CoT, Self-Consistency, Tree-of-Thoughts ๋“ฑ ์ด‰๋ฐœ
  • Scaling Law ํ™•์žฅ: ๋‹จ์ˆœ ์Šค์ผ€์ผ๋ง์ด ์•„๋‹Œ ํ”„๋กฌํ”„ํŒ… ๋ฐฉ์‹์˜ ์ค‘์š”์„ฑ ๊ฐ•์กฐ

โš ๏ธ ํ•œ๊ณ„์  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ

์ฃผ์š” ํ•œ๊ณ„์ 

1. ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ ์˜์กด์„ฑ

  • 100B+ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ชจ๋ธ์—์„œ๋งŒ ํšจ๊ณผ ๋ฐœํœ˜
  • ์†Œํ˜• ๋ชจ๋ธ์€ ์œ ์ฐฝํ•˜์ง€๋งŒ ๋…ผ๋ฆฌ์ ์ด์ง€ ์•Š์€ ์ถ”๋ก  ์ฒด์ธ ์ƒ์„ฑ
  • ์†Œํ˜• ๋ชจ๋ธ์—์„œ๋Š” ์˜คํžˆ๋ ค ์„ฑ๋Šฅ ์ €ํ•˜ ๊ฐ€๋Šฅ

2. ์ถ”๋ก ์˜ ์ •ํ™•์„ฑ ๋ฏธ๋ณด์žฅ

  • CoT๊ฐ€ ํ•ญ์ƒ ์˜ฌ๋ฐ”๋ฅธ ์ถ”๋ก ์„ ์ƒ์„ฑํ•˜์ง€ ์•Š์Œ
  • ๊ทธ๋Ÿด๋“ฏํ•ด ๋ณด์ด์ง€๋งŒ ํ‹€๋ฆฐ ์ถ”๋ก  ๊ฒฝ๋กœ ๊ฐ€๋Šฅ
  • Faithfulness ๋ฌธ์ œ: ์ตœ์ข… ๋‹ต์ด ์ถ”๋ก  ๊ณผ์ •๊ณผ ๋ถˆ์ผ์น˜ํ•  ์ˆ˜ ์žˆ์Œ

3. ๊ณ„์‚ฐ ๋น„์šฉ ์ฆ๊ฐ€

  • ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ ํ•„์š”๋กœ ์ธํ•œ ๋†’์€ ์ถ”๋ก  ๋น„์šฉ
  • ๊ธด ์ถœ๋ ฅ ์ƒ์„ฑ์œผ๋กœ ์ธํ•œ ์ง€์—ฐ ์‹œ๊ฐ„ ์ฆ๊ฐ€
  • ํ† ํฐ ๋น„์šฉ ์ฆ๊ฐ€

4. ์ˆ˜๋™ ์˜ˆ์‹œ ์ž‘์„ฑ ํ•„์š”

  • Few-shot ์˜ˆ์‹œ๋ฅผ ์ˆ˜๋™์œผ๋กœ ์ž‘์„ฑํ•ด์•ผ ํ•จ
  • ๊ณผ์ œ๋ณ„ ์ตœ์ ์˜ ์˜ˆ์‹œ ์„ ์ •์ด ์–ด๋ ค์›€
  • ์–ด๋…ธํ…Œ์ด์…˜ ๋น„์šฉ (๋Œ€๊ทœ๋ชจ ์ ์šฉ ์‹œ)

5. ๊ทผ๋ณธ์  ์งˆ๋ฌธ

  • ๋ชจ๋ธ์ด ์ง„์ •์œผ๋กœ “์ถ”๋ก ”ํ•˜๋Š”์ง€, ํŒจํ„ด ๋งค์นญ์ธ์ง€ ๋…ผ์Ÿ ์ค‘
  • CoT๊ฐ€ ์ธ๊ฐ„์˜ ์‚ฌ๊ณ ๋ฅผ ๋ชจ๋ฐฉํ•˜์ง€๋งŒ, ์‹ค์ œ “์ดํ•ด”์ธ์ง€ ๋ถˆ๋ช…ํ™•

์—ด๋ฆฐ ์งˆ๋ฌธ๋“ค

  1. ๋ชจ๋ธ ๊ทœ๋ชจ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ์ถ”๋ก  ๋Šฅ๋ ฅ์ด ์–ผ๋งˆ๋‚˜ ๋” ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ์„๊นŒ?
  2. ์–ด๋–ค ํ”„๋กฌํ”„ํŒ… ๋ฐฉ๋ฒ•์ด LLM์ด ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ํƒœ์Šคํฌ ๋ฒ”์œ„๋ฅผ ํ™•์žฅํ•  ์ˆ˜ ์žˆ์„๊นŒ?
  3. CoT๋ฅผ ์†Œํ˜• ๋ชจ๋ธ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ์„๊นŒ?

๐Ÿ”— ๊ด€๋ จ ๋…ผ๋ฌธ

์„ ํ–‰ ์—ฐ๊ตฌ

๋…ผ๋ฌธ ํ•ต์‹ฌ ๋‚ด์šฉ
Scratchpad (Nye et al., 2021) ์ค‘๊ฐ„ ๊ณ„์‚ฐ์„ ์œ„ํ•œ ์Šคํฌ๋ž˜์น˜ํŒจ๋“œ ๊ฐœ๋…
Rationale-Augmented Training ์ถ”๋ก  ๊ณผ์ •์„ ํฌํ•จํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ ํ™œ์šฉ

ํ•ต์‹ฌ ํ›„์† ์—ฐ๊ตฌ

๋…ผ๋ฌธ ํ•ต์‹ฌ ๋‚ด์šฉ ์—ฐ๋„
Zero-shot CoT (Kojima et al.) “Let’s think step by step” ํ•œ ๋ฌธ์žฅ์œผ๋กœ CoT ์œ ๋„ 2022
Self-Consistency (Wang et al.) ๋‹ค์–‘ํ•œ ์ถ”๋ก  ๊ฒฝ๋กœ ์ƒ˜ํ”Œ๋ง ํ›„ ๋‹ค์ˆ˜๊ฒฐ ํˆฌํ‘œ 2022
Auto-CoT (Zhang et al.) LLM์œผ๋กœ CoT ์˜ˆ์‹œ ์ž๋™ ์ƒ์„ฑ 2022
Least-to-Most Prompting ๋ฌธ์ œ๋ฅผ ํ•˜์œ„ ๋ฌธ์ œ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ํ•ด๊ฒฐ 2022

ํ™•์žฅ ์—ฐ๊ตฌ๋“ค

๋…ผ๋ฌธ ํ•ต์‹ฌ ๋‚ด์šฉ
Tree of Thoughts (ToT) ์—ฌ๋Ÿฌ ์ถ”๋ก  ๊ฒฝ๋กœ๋ฅผ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋กœ ํƒ์ƒ‰
Graph of Thoughts (GoT) ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋กœ ์ถ”๋ก  ํ™•์žฅ
ReAct ์ถ”๋ก (Reasoning)๊ณผ ํ–‰๋™(Acting)์„ ๊ฒฐํ•ฉ
Reflexion ์ž๊ธฐ ๋ฐ˜์„ฑ์„ ํ†ตํ•œ ์ถ”๋ก  ๊ฐœ์„ 
PAL (Program-Aided LM) ์ฝ”๋“œ ์ƒ์„ฑ์„ ํ†ตํ•œ ์ถ”๋ก 

๊ด€๋ จ ๊ฐœ๋…

  • Few-shot Learning: ์†Œ์ˆ˜์˜ ์˜ˆ์‹œ๋กœ ์ƒˆ ๊ณผ์ œ ์ˆ˜ํ–‰
  • Prompt Engineering: ์ตœ์ ์˜ ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„
  • In-context Learning: ์ปจํ…์ŠคํŠธ ๋‚ด ํ•™์Šต
  • Emergent Abilities: LLM์˜ ์ฐฝ๋ฐœ์  ๋Šฅ๋ ฅ

๐Ÿ’ป ์‹ค๋ฌด ์ ์šฉ ํฌ์ธํŠธ

์–ธ์ œ CoT๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š”๊ฐ€?

์กฐ๊ฑด ๊ถŒ์žฅ ์‚ฌํ•ญ
๋‹ค๋‹จ๊ณ„ ์ถ”๋ก  ํ•„์š” CoT ์ ๊ทน ํ™œ์šฉ
๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ (100B+) ์‚ฌ์šฉ CoT ํšจ๊ณผ์ 
์ˆ˜ํ•™/๋…ผ๋ฆฌ ๋ฌธ์ œ CoT ๊ฐ•๋ ฅ ์ถ”์ฒœ
๋‹จ์ˆœ ํ•œ๋‘ ๋‹จ๊ณ„ ๋ฌธ์ œ ํ‘œ์ค€ ํ”„๋กฌํ”„ํŒ…์œผ๋กœ ์ถฉ๋ถ„
์†Œ๊ทœ๋ชจ ๋ชจ๋ธ CoT ํšจ๊ณผ ์ œํ•œ์ 

CoT ํ”„๋กฌํ”„ํŠธ ์ž‘์„ฑ ๊ฐ€์ด๋“œ

1. ๊ธฐ๋ณธ ๊ตฌ์กฐ

๋‹น์‹ ์€ ๋ฌธ์ œ๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ํ’€์–ด๋‚˜๊ฐ€๋Š” ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.

์˜ˆ์‹œ 1:
Q: [์งˆ๋ฌธ]
A: [๋‹จ๊ณ„ 1]. [๋‹จ๊ณ„ 2]. [๋‹จ๊ณ„ 3]. ๋”ฐ๋ผ์„œ ๋‹ต์€ [๋‹ต]์ž…๋‹ˆ๋‹ค.

์˜ˆ์‹œ 2:
Q: [์งˆ๋ฌธ]
A: [๋‹จ๊ณ„ 1]. [๋‹จ๊ณ„ 2]. ๋”ฐ๋ผ์„œ ๋‹ต์€ [๋‹ต]์ž…๋‹ˆ๋‹ค.

์‹ค์ œ ๋ฌธ์ œ:
Q: [์ƒˆ๋กœ์šด ์งˆ๋ฌธ]
A:

2. ํšจ๊ณผ์ ์ธ CoT ์˜ˆ์‹œ ์ž‘์„ฑ ํŒ

์›์น™ ์„ค๋ช…
๋ช…ํ™•ํ•œ ๋‹จ๊ณ„ ๊ฐ ์ถ”๋ก  ๋‹จ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„
์ž์—ฐ์Šค๋Ÿฌ์šด ์–ธ์–ด ๊ธฐ๊ณ„์ ์ด์ง€ ์•Š์€ ์ž์—ฐ์Šค๋Ÿฌ์šด ์„ค๋ช…
์ค‘๊ฐ„ ๊ณ„์‚ฐ ํฌํ•จ ์ˆซ์ž ๋ฌธ์ œ์˜ ๊ฒฝ์šฐ ๊ณ„์‚ฐ ๊ณผ์ • ๋ช…์‹œ
๋‹ค์–‘ํ•œ ์˜ˆ์‹œ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋ฌธ์ œ ํฌํ•จ
์ ์ ˆํ•œ ๊ธธ์ด ๋„ˆ๋ฌด ๊ธธ๊ฑฐ๋‚˜ ์งง์ง€ ์•Š๊ฒŒ

3. Python ๊ตฌํ˜„ ์˜ˆ์‹œ

import openai

def create_cot_prompt(question: str) -> str:
    """Chain-of-Thought ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ"""

    exemplars = """
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?
A: Jason started with 20 lollipops. He now has 12 lollipops.
So he gave away 20 - 12 = 8 lollipops. The answer is 8.

Q: There are 15 trees in the grove. Grove workers will plant trees today.
After they are done, there will be 21 trees. How many trees did the workers plant?
A: There were 15 trees originally. After planting there are 21 trees.
So the workers planted 21 - 15 = 6 trees. The answer is 6.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad.
How many toys does he have now?
A: Shawn started with 5 toys. He got 2 toys from mom and 2 from dad,
which is 2 + 2 = 4 toys. So now he has 5 + 4 = 9 toys. The answer is 9.
"""

    prompt = f"{exemplars}\nQ: {question}\nA:"
    return prompt

def solve_with_cot(question: str, model: str = "gpt-4") -> dict:
    """CoT๋ฅผ ํ™œ์šฉํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ"""

    prompt = create_cot_prompt(question)

    response = openai.ChatCompletion.create(
        model=model,
        messages=[{"role": "user", "content": prompt}],
        temperature=0,  # Greedy decoding
        max_tokens=256
    )

    output = response.choices[0].message.content

    # ๋‹ต๋ณ€ ํŒŒ์‹ฑ
    reasoning = output.rsplit("The answer is", 1)[0].strip()
    answer = output.rsplit("The answer is", 1)[-1].strip().rstrip(".")

    return {
        "question": question,
        "reasoning": reasoning,
        "answer": answer,
        "full_output": output
    }

4. Zero-shot CoT ๊ตฌํ˜„

def zero_shot_cot(question: str) -> str:
    """Zero-shot CoT - ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•"""
    return f"{question}\n\nLet's think step by step."

# ํ•œ๊ตญ์–ด ๋ฒ„์ „
def zero_shot_cot_kr(question: str) -> str:
    return f"{question}\n\n๋‹จ๊ณ„๋ณ„๋กœ ์ƒ๊ฐํ•ด๋ด…์‹œ๋‹ค."

5. Self-Consistency ๊ตฌํ˜„

import collections

def self_consistency(question: str, n_samples: int = 5) -> str:
    """Self-Consistency๋ฅผ ํ†ตํ•œ ๋‹ต๋ณ€ ์‹ ๋ขฐ๋„ ํ–ฅ์ƒ"""

    answers = []

    for _ in range(n_samples):
        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=[{"role": "user", "content": create_cot_prompt(question)}],
            temperature=0.7,  # ๋‹ค์–‘์„ฑ์„ ์œ„ํ•œ temperature
            max_tokens=256
        )

        output = response.choices[0].message.content
        answer = extract_answer(output)
        answers.append(answer)

    # ๋‹ค์ˆ˜๊ฒฐ๋กœ ์ตœ์ข… ๋‹ต ์„ ํƒ
    counter = collections.Counter(answers)
    final_answer = counter.most_common(1)[0][0]

    return final_answer

ํ•œ๊ตญ์–ด CoT ์˜ˆ์‹œ

์งˆ๋ฌธ: ์ฒ ์ˆ˜๋Š” ์‚ฌ๊ณผ 5๊ฐœ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ํฌ์—๊ฒŒ 2๊ฐœ๋ฅผ ์ฃผ๊ณ ,
์–ด๋จธ๋‹ˆ๊ป˜ 3๊ฐœ๋ฅผ ๋” ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค. ์ฒ ์ˆ˜๊ฐ€ ๊ฐ€์ง„ ์‚ฌ๊ณผ๋Š” ๋ช‡ ๊ฐœ์ผ๊นŒ์š”?

ํ’€์ด: ์ฒ ์ˆ˜๋Š” ์ฒ˜์Œ์— ์‚ฌ๊ณผ 5๊ฐœ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
์˜ํฌ์—๊ฒŒ 2๊ฐœ๋ฅผ ์ฃผ์—ˆ์œผ๋ฏ€๋กœ 5 - 2 = 3๊ฐœ๊ฐ€ ๋‚จ์Šต๋‹ˆ๋‹ค.
์–ด๋จธ๋‹ˆ๊ป˜ 3๊ฐœ๋ฅผ ๋” ๋ฐ›์•˜์œผ๋ฏ€๋กœ 3 + 3 = 6๊ฐœ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
๋”ฐ๋ผ์„œ ๋‹ต์€ 6๊ฐœ์ž…๋‹ˆ๋‹ค.

์‹ค๋ฌด ์ ์šฉ ์‹œ ์ฃผ์˜์‚ฌํ•ญ

  1. ๋ชจ๋ธ ํฌ๊ธฐ ๊ณ ๋ ค: GPT-4, Claude, Gemini ๋“ฑ ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์—์„œ ํšจ๊ณผ์ 
  2. ํ† ํฐ ๋น„์šฉ ๊ด€๋ฆฌ: ์ถ”๋ก  ๋‹จ๊ณ„๋กœ ์ธํ•œ ์ถœ๋ ฅ ํ† ํฐ ์ฆ๊ฐ€ ๊ณ ๋ ค
  3. ๋„๋ฉ”์ธ๋ณ„ ์˜ˆ์‹œ ์ค€๋น„: ํƒœ์Šคํฌ์— ๋งž๋Š” ๊ณ ํ’ˆ์งˆ CoT ์˜ˆ์‹œ ์ค€๋น„
  4. Self-Consistency ํ™œ์šฉ: ์ค‘์š”ํ•œ ๊ฒฐ์ •์—๋Š” ๋‹ค์ค‘ ์ƒ˜ํ”Œ๋ง ๊ณ ๋ ค
  5. ์ถœ๋ ฅ ํŒŒ์‹ฑ: “The answer is” ๊ฐ™์€ ๋งˆ์ปค๋กœ ์ตœ์ข… ๋‹ต ์ถ”์ถœ

๐Ÿท๏ธ Tags

#ChainOfThought #CoT #Prompting #Reasoning #LLM #NeurIPS2022 #GoogleBrain #EmergentAbility #ArithmeticReasoning #CommonsenseReasoning #SymbolicReasoning #PromptEngineering #FewShotLearning #InContextLearning #GSM8K #PaLM #GPT3 #SelfConsistency #ZeroShotCoT #AIAgent


๐Ÿ“š ์ฐธ๊ณ  ์ž๋ฃŒ

  • arXiv Paper
  • NeurIPS 2022 Proceedings
  • Google Research Blog
  • Prompt Engineering Guide – CoT
  • Semantic Scholar
  • OpenReview
์ž‘์„ฑ์ž

skycave

Follow Me
๋‹ค๋ฅธ ๊ธฐ์‚ฌ
Previous

[AI Paper] ๐Ÿ“„ CRAG: Comprehensive RAG Benchmark

Next

[AI Paper] ๐Ÿ“„ Cognitive Architectures for Language Agents (CoALA)

๋Œ“๊ธ€ ์—†์Œ! ์ฒซ ๋Œ“๊ธ€์„ ๋‚จ๊ฒจ๋ณด์„ธ์š”.

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ ์‘๋‹ต ์ทจ์†Œ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค

์ตœ์‹ ๊ธ€

  • ๐Ÿ“Š ์ผ์ผ ๋‰ด์Šค ๊ฐ์„ฑ ๋ฆฌํฌํŠธ – 2026-01-28
  • AI ์‹œ์Šคํ…œ์˜ ๋ฌธ๋งฅ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰(Contextual Retrieval) | Anthropic
  • “Think” ํˆด: Claude๊ฐ€ ๋ฉˆ์ถฐ์„œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ | Anthropic
  • Claude Code ๋ชจ๋ฒ” ์‚ฌ๋ก€ \ Anthropic
  • ์šฐ๋ฆฌ๊ฐ€ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ ๋ฐฉ๋ฒ•
Copyright 2026 — skycave's Blog. All rights reserved. Blogsy WordPress Theme