๋ณธ๋ฌธ์œผ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
-
skycave's Blog
skycave's Blog
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
๋‹ซ๊ธฐ

๊ฒ€์ƒ‰

AI

[AI Paper] ๐Ÿ“„ From Who They Are to How They Act: Behavioral Traits in Generative Agent-Based Models of Social Media

By skycave
2026๋…„ 01์›” 25์ผ 13 Min Read
0

๐Ÿ“„ From Who They Are to How They Act: Behavioral Traits in Generative Agent-Based Models of Social Media

Behavioral Traits in Generative Agent-Based Models of Social Media

์ƒ์„ฑํ˜• ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง(GABM)์—์„œ ํ–‰๋™ ํŠน์„ฑ์˜ ์ค‘์š”์„ฑ์„ ๊ทœ๋ช…ํ•œ ์—ฐ๊ตฌ


๐Ÿ“Œ 1๋‹จ๊ณ„: ๊ธฐ๋ณธ ์ •๋ณด

๋ฌธ์„œ ์ •๋ณด

ํ•ญ๋ชฉ ๋‚ด์šฉ
์ œ๋ชฉ From Who They Are to How They Act: Behavioral Traits in Generative Agent-Based Models of Social Media
์ €์ž Valerio La Gatta, Gian Marco Orlando, Marco Perillo, Ferdinando Tammaro, Vincenzo Moscato
๋ฐœํ–‰ ์ •๋ณด arXiv:2601.15114v1 (2026๋…„ 1์›” 21์ผ ์ œ์ถœ)
๋ถ„์•ผ/์นดํ…Œ๊ณ ๋ฆฌ Computer Science > Multiagent Systems (cs.MA)
DOI https://doi.org/10.48550/arXiv.2601.15114
๋ผ์ด์„ ์Šค CC BY-SA 4.0
์ฝ”๋“œ GitHub Repository

๋งํฌ

  • arXiv ๋งํฌ: https://arxiv.org/abs/2601.15114v1
  • PDF ๋งํฌ: https://arxiv.org/pdf/2601.15114v1.pdf
  • HTML ๋ฒ„์ „: https://arxiv.org/html/2601.15114v1

ํ•ต์‹ฌ ์š”์•ฝ (Abstract)

์ƒ์„ฑํ˜• ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง(GABM)์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•˜์—ฌ ์†Œ์…œ ๋ฏธ๋””์–ด ํ™˜๊ฒฝ์—์„œ ์ธ๊ฐ„ ํ–‰๋™์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ํŒจ๋Ÿฌ๋‹ค์ž„์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์—์ด์ „ํŠธ๋ฅผ ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ์†์„ฑ, ์„ฑ๊ฒฉ ํŠน์„ฑ, ๊ด€์‹ฌ์‚ฌ ๋“ฑ์œผ๋กœ ํŠน์„ฑํ™”ํ•˜์ง€๋งŒ, ํ”Œ๋žซํผ ์•ก์…˜์— ๋Œ€ํ•œ ํ–‰๋™์  ์„ฑํ–ฅ์„ ์ธ์ฝ”๋”ฉํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์‹ค์ œ ํ”Œ๋žซํผ์—์„œ ๊ด€์ฐฐ๋˜๋Š” ์ฐจ๋ณ„ํ™”๋œ ์ฐธ์—ฌ ์Šคํƒ€์ผ์ด ์•„๋‹Œ ๋™์งˆ์ ์ธ ์ฐธ์—ฌ ํŒจํ„ด์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฒŒ์‹œ, ๋ฆฌ์…ฐ์–ด, ๋Œ“๊ธ€, ๋ฆฌ์•ก์…˜, ๋น„ํ™œ๋™ ๋“ฑ์— ๋Œ€ํ•œ ์—์ด์ „ํŠธ์˜ ์„ฑํ–ฅ์„ ์กฐ์ ˆํ•˜๋Š” ๋ช…์‹œ์ ์ธ ํŠน์„ฑํ™” ๊ณ„์ธต์œผ๋กœ์„œ ํ–‰๋™ ํŠน์„ฑ(Behavioral Traits)์˜ ์—ญํ• ์„ ์กฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. 980๊ฐœ์˜ ์—์ด์ „ํŠธ๊ฐ€ ์ฐธ์—ฌํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฒ€์ฆ์„ ํ†ตํ•ด, ํ–‰๋™ ํŠน์„ฑ์ด ์ด์งˆ์ ์ด๊ณ  ํ”„๋กœํ•„ ์ผ๊ด€์ ์ธ ์ฐธ์—ฌ ํŒจํ„ด์„ ์œ ์ง€ํ•˜๊ณ , ์ฆํญ ์ง€ํ–ฅ ๋ฐ ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ํ”„๋กœํ•„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด ํ˜„์‹ค์ ์ธ ์ฝ˜ํ…์ธ  ์ „ํŒŒ ์—ญํ•™์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ž…์ฆํ•ฉ๋‹ˆ๋‹ค.


๐Ÿ“Œ 2๋‹จ๊ณ„: ์—ฐ๊ตฌ ๋‚ด์šฉ

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์˜์‹

์ƒ์„ฑํ˜• ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง(GABM)์˜ ๋“ฑ์žฅ

  • LLM์„ ํ™œ์šฉํ•˜์—ฌ ์ž์œจ์ ์ธ ์—์ด์ „ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ธ๊ฐ„๊ณผ ์œ ์‚ฌํ•œ ํ–‰๋™์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜
  • ์ •๋ณด ์ „ํŒŒ, ์˜ํ–ฅ๋ ฅ ๊ณผ์ •, ๋„คํŠธ์›Œํฌ ํ˜„์ƒ ๋ชจ๋ธ๋ง์— ์ž ์žฌ๋ ฅ ์ž…์ฆ

๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„

  • ์—์ด์ „ํŠธ ํŠน์„ฑํ™”์˜ ์ œ์•ฝ์‚ฌํ•ญ:
    • ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ์†์„ฑ (๋‚˜์ด, ์„ฑ๋ณ„, ์ธ์ข…, ๊ต์œก์ˆ˜์ค€, ์ง์—…)
    • ์„ฑ๊ฒฉ ํŠน์„ฑ ๋ฐ ๊ด€์‹ฌ์‚ฌํ•ญ
    • ๋‹จ์ : “์—์ด์ „ํŠธ๊ฐ€ ๋ˆ„๊ตฌ์ธ์ง€”๋Š” ์ •์˜ํ•˜์ง€๋งŒ “์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€”๋Š” ์ง€์ •ํ•˜์ง€ ์•Š์Œ

๋ฌธ์ œ: ํ–‰๋™์  ๋™์งˆ์„ฑ

  • ๋‹ค์–‘ํ•œ ์ •์ฒด์„ฑ์„ ๊ฐ€์ง„ ์—์ด์ „ํŠธ๋ผ๋„ ๋™์งˆ์ ์ธ ์ฐธ์—ฌ ํŒจํ„ด์„ ๋‚˜ํƒ€๋ƒ„
  • ๋Œ€๋ถ€๋ถ„ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ์—๋งŒ ์ง‘์ค‘, ๋ฆฌ์…ฐ์–ด, ๋Œ“๊ธ€, ์„ ๋ณ„์  ๋น„ํ™œ๋™ ๋“ฑ ์ฐธ์—ฌ ๋ชจ๋“œ ๋ฌด์‹œ
  • ์‹ค์ œ ์†Œ์…œ ํ”Œ๋žซํผ์˜ ์ฐจ๋ณ„ํ™”๋œ ์ฐธ์—ฌ ์Šคํƒ€์ผ(๊ด€์ฐฐ์ž, ์ฆํญ์ž, ๊ธฐ์—ฌ์ž, ์ฐธ์—ฌ์ž) ์žฌํ˜„ ๋ถˆ๊ฐ€

์—ฐ๊ตฌ์˜ ๊ณต๋ฐฑ

  • Wang et al. (2025)๋ฅผ ์ œ์™ธํ•˜๊ณ  LLM ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ํ–‰๋™ ์ง€ํ–ฅ ํ”„๋กœํ•„์„ ๋ช…์‹œ์ ์œผ๋กœ ๋„์ž…ํ•œ ์—ฐ๊ตฌ ๋ถ€์žฌ
  • ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ถ”์ฒœ ์‹œ์Šคํ…œ ๋„๋ฉ”์ธ์—์„œ์˜ ์—ญํ•  ๊ธฐ๋ฐ˜ ์ฝ˜ํ…์ธ  ์†Œ๋น„์— ์ง‘์ค‘
  • ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์˜ ์ „์ฒด ์•ก์…˜ ๊ณต๊ฐ„์— ๊ฑธ์นœ ์ฐธ์—ฌ ํŒจํ„ด ๊ทœ์ œ๋Š” ๋ฏธํƒ๊ตฌ

2. ์—ฐ๊ตฌ ๋ชฉ์  ๋ฐ ์—ฐ๊ตฌ ์งˆ๋ฌธ

์—ฐ๊ตฌ ๋ชฉํ‘œ

๋ช…์‹œ์ ์ธ ํ–‰๋™ ํŠน์„ฑ์ด ์ƒ์„ฑํ˜• ์—์ด์ „ํŠธ๊ฐ€ ๋‹ค์Œ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ์ง€ ์กฐ์‚ฌ:
1. ์ด์งˆ์ ์ธ ์ฐธ์—ฌ ํŒจํ„ด ์œ ์ง€
2. ์‹ ํฅ ์ „ํŒŒ ์—ญํ•™ ์žฌํ˜„
3. ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—์„œ ๊ด€์ฐฐ๋˜๋Š” ๊ตฌ์กฐ์  ์—ญํ• ๊ณผ ์ •๋ ฌ

์—ฐ๊ตฌ ์งˆ๋ฌธ (Research Questions)

RQ1: ํ–‰๋™ ํŠน์„ฑ์ด ์ด์งˆ์ ์ธ ์—์ด์ „ํŠธ ํ–‰๋™์˜ ์ถœํ˜„์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”๊ฐ€?
– ๋ช…์‹œ์ ์ธ ํ–‰๋™ ํŠน์„ฑ์ด ๋‹ค์–‘ํ•œ ์ฐธ์—ฌ ์Šคํƒ€์ผ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€?
– ํŠน์„ฑ ์—†์ด ์—์ด์ „ํŠธ๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ฐจ๋ณ„ํ™”๋œ ํ–‰๋™์„ ๋‚˜ํƒ€๋‚ด๋Š”๊ฐ€?

RQ2: ํ–‰๋™ ํŠน์„ฑ์ด ์ฝ˜ํ…์ธ  ์ „ํŒŒ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”๊ฐ€?
– ์ฆํญ ์ง€ํ–ฅ ํ”„๋กœํ•„๊ณผ ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ํ”„๋กœํ•„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ „ํŒŒ ์—ญํ•™์ด ์–ด๋–ป๊ฒŒ ํ˜•์„ฑ๋˜๋Š”๊ฐ€?
– ์ „ํŒŒ ์บ์Šค์ผ€์ด๋“œ์˜ ํ˜•์„ฑ ์กฐ๊ฑด์€ ๋ฌด์—‡์ธ๊ฐ€?

RQ3: ํ–‰๋™ ํŠน์„ฑ์ด ์—์ด์ „ํŠธ์˜ ๋„คํŠธ์›Œํฌ ์ค‘์‹ฌ์„ฑ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”๊ฐ€?
– ํ–‰๋™ ํ”„๋กœํ•„์ด ์‹ ํฅ ๋„คํŠธ์›Œํฌ์—์„œ ์–ด๋–ค ๊ตฌ์กฐ์  ์—ญํ• ์„ ์ฐจ์ง€ํ•˜๋Š”๊ฐ€?
– ์ฆํญ ์ง€ํ–ฅ ์—์ด์ „ํŠธ์™€ ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ์—์ด์ „ํŠธ์˜ ๋„คํŠธ์›Œํฌ ์œ„์น˜ ์ฐจ์ด๋Š”?

RQ4: ํ–‰๋™ ํŠน์„ฑ์ด ์‹ค์ œ ์†Œ์…œ ๋„คํŠธ์›Œํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์žฌํ˜„ํ•˜๋Š”๊ฐ€?
– ์‹ค์ฆ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์—์ด์ „ํŠธ ์ดˆ๊ธฐํ™” ์‹œ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์ •๋ ฌ ์ •๋„๋Š”?
– ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋„คํŠธ์›Œํฌ๊ฐ€ ํ˜„์‹ค ์„ธ๊ณ„ ๋„คํŠธ์›Œํฌ์™€ ์–ผ๋งˆ๋‚˜ ์œ ์‚ฌํ•œ๊ฐ€?


3. ์ด๋ก ์  ํ”„๋ ˆ์ž„์›Œํฌ

ํ–‰๋™ ํŠน์„ฑ(Behavioral Traits)์˜ ๊ฐœ๋… ์ •์˜

  • ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•: ์ •์ฒด์„ฑ ํŠน์„ฑ(Traits Identity) โ†’ ๋ˆ„๊ตฌ์ธ์ง€
  • ๋ณธ ์—ฐ๊ตฌ ์ œ์•ˆ: ํ–‰๋™ ํŠน์„ฑ(Traits Behavioral) โ†’ ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€
  • ์ด๋ก ์  ๊ธฐ๋ฐ˜: ์‹ค์ฆ์  ์‚ฌ์šฉ์ž ์œ ํ˜•ํ•™(Online Participation Research)

7๊ฐ€์ง€ ์ „ํ˜•์  ํ–‰๋™ ํ”„๋กœํ•„

ํ”„๋กœํ•„ ํŠน์ง• ์‹ค์ฆ์  ๊ทผ๊ฑฐ
Silent Observer (SO) ์™„์ „ํžˆ ์ˆ˜๋™์  ์‚ฌ์šฉ์ž, ๊ฐ•๋ ฅํ•œ ์™ธ๋ถ€ ํŠธ๋ฆฌ๊ฑฐ ์—†์ด ๊ฒŒ์‹œ/์ƒํ˜ธ์ž‘์šฉ ๋ถˆ์ˆ˜ํ–‰ “Lurker” ํ–‰๋™ (Akar & Mardikyan 2018; Brandtzรฆg 2010)
Occasional Sharer (OS) ์ €ํ™œ๋™ ์‚ฌ์šฉ์ž, ์„ ํƒ์  ์ฝ˜ํ…์ธ  ๋ฆฌ์…ฐ์–ด, ์›๋ณธ ๊ฒŒ์‹œ/๋Œ“๊ธ€ ๋ถˆ์ˆ˜ํ–‰ ๊ฐ„ํ—์  ์ฐธ์—ฌ ํŒจํ„ด (Khobzi & Teimourpour 2015)
Occasional Engager (OE) ์ตœ์†Œ ๋ฐ˜์‘์  ํ–‰๋™, ๊ฐ„ํ—์  ์ข‹์•„์š”/์‹ซ์–ด์š”/๋Œ“๊ธ€ ์ €์ฐธ์—ฌ ์ƒํ˜ธ์ž‘์šฉ ํŒจํ„ด (Brandtzaeg & Heim 2011)
Balanced Participant (BP) ์ค‘๊ฐ„ ํ™œ๋™, ์›๋ณธ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๋ฆฌ์…ฐ์–ด ๊ฐ„ ๊ท ํ˜• ๋‹ค์ค‘ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ธฐ์—ฌ (Ying et al. 2018)
Content Amplifier (CA) ์ •๋ณด ์ „ํŒŒ ์ง€ํ–ฅ, ๋นˆ๋ฒˆํ•œ ๋ฆฌ์…ฐ์–ด ๋ฐ ์ง€์ง€์  ๋ฆฌ์•ก์…˜, ์ œํ•œ๋œ ์›๋ณธ ์ƒ์„ฑ ์Šˆํผ์Šคํ”„๋ ˆ๋”, ๊ณ ์ „ํŒŒ ์—์ด์ „ํŠธ (Murdock et al. 2024)
Proactive Contributor (PC) ์›๋ณธ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ ์ค‘์‹ฌ, ์ฝ˜ํ…์ธ  ํฌ๋ฆฌ์—์ดํ„ฐ/์˜๊ฒฌ ๋ฆฌ๋” ์ฝ˜ํ…์ธ  ์ƒ์„ฑ์ž (Akar & Mardikyan 2018)
Interactive Enthusiast (IE) ๊ณ ๋ฐ˜์‘ ์‚ฌ์šฉ์ž, ํƒ€์ธ ์ฝ˜ํ…์ธ ์— ์ง‘์ค‘์  ์ฐธ์—ฌ(์ข‹์•„์š”, ์‹ซ์–ด์š”, ๋Œ“๊ธ€), ๊ฒŒ์‹œ/๋ฆฌ์…ฐ์–ด ํฌ์†Œ ์†Œ์…œ๋ผ์ด์ €, ๊ณ ์ฐธ์—ฌ ์‚ฌ์šฉ์ž (Brandtzรฆg 2010)

์ด๋ก ์  ๊ธฐ์—ฌ์ 

  1. ํ–‰๋™ ํŠน์„ฑ์˜ ๋ช…์‹œ์  ํŠน์„ฑํ™”: ์ด๋ก ์  ๊ทผ๊ฑฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ–‰๋™ ํ”„๋กœํ•„์˜ ์ฒด๊ณ„์  ์ •์˜
  2. 2๊ณ„์ธต ํ”„๋กœํ•„ ์•„ํ‚คํ…์ฒ˜: ์ •์ฒด์„ฑ(Identity) + ํ–‰๋™(Behavior) ์ด์ค‘ ๊ณ„์ธต
  3. ํ™œ๋™ ๋ฉ”๋ชจ๋ฆฌ(Activity Memory): ํ–‰๋™ ์ผ๊ด€์„ฑ ์œ ์ง€๋ฅผ ์œ„ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜

4. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก 

4.1 ํ”„๋ ˆ์ž„์›Œํฌ ํ™•์žฅ

๊ธฐ์กด GABM ํ”„๋ ˆ์ž„์›Œํฌ(Orlando et al. 2025)๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ™•์žฅ:

ํ•ต์‹ฌ ํ™•์žฅ 1: ํ–‰๋™ ํŠน์„ฑ ๊ณ„์ธต ๋„์ž…
  • ์—์ด์ „ํŠธ ํ”„๋กœํ•„ ๊ตฌ์กฐ:
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Agent Profile โ”‚
    โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
    โ”‚ Identity Traits โ”‚ โ† FinePersonas ๋ฐ์ดํ„ฐ์…‹ ๊ธฐ๋ฐ˜
    โ”‚ - Background info โ”‚ (์—ฐ๋ น, ์„ฑ๋ณ„, ๊ด€์‹ฌ์‚ฌ ๋“ฑ)
    โ”‚ - Interests โ”‚
    โ”‚ - Social roles โ”‚
    โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
    โ”‚ Behavioral Traits โ”‚ โ† 7๊ฐ€์ง€ ํ”„๋กœํ•„ ๋ช…์‹œ์  ํ• ๋‹น
    โ”‚ - SO, OS, OE, BP, CA โ”‚ (๋ณธ ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ)
    โ”‚ PC, IE โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
ํ•ต์‹ฌ ํ™•์žฅ 2: ํ™œ๋™ ๋ฉ”๋ชจ๋ฆฌ(Activity Memory) ๋„์ž…
  • ๊ธฐ์กด ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ:
    • ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(STM): ์ตœ๊ทผ ์ฝ˜ํ…์ธ  + ์ฐธ์—ฌ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ
    • ์žฅ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(LTM): ๊ณ ์˜ํ–ฅ๋ ฅ ์ฝ˜ํ…์ธ  ์œ ์ง€
  • ํ™•์žฅ๋œ ๋ฉ”๋ชจ๋ฆฌ:
    • ํ™œ๋™ ๋ฉ”๋ชจ๋ฆฌ(AM): ์—์ด์ „ํŠธ์˜ ์ตœ๊ทผ ํ–‰๋™ ๊ธฐ๋ก
    • ๊ฐ ์•ก์…˜ ํƒ€์ž…์˜ ๋งˆ์ง€๋ง‰ ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ์ถ”์ 
    • ํ–‰๋™ ์ผ๊ด€์„ฑ ์œ ์ง€๋ฅผ ์œ„ํ•œ ๋งฅ๋ฝ ์ œ๊ณต
ํ•ต์‹ฌ ํ™•์žฅ 3: ์ „ํŒŒ ์ฒด์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜
  • ๊ธฐ์กด ์ œํ•œ์‚ฌํ•ญ: ๋ฆฌ์…ฐ์–ด๋œ ์ฝ˜ํ…์ธ ๊ฐ€ ํŒ”๋กœ์›Œ ํ”ผ๋“œ์— ์ „ํŒŒ๋˜์ง€ ์•Š์Œ
  • ํ™•์žฅ๋œ ์„ค๊ณ„:
    • ์—์ด์ „ํŠธ๊ฐ€ ์ฝ˜ํ…์ธ ๋ฅผ ๋ฆฌ์…ฐ์–ดํ•  ๋•Œ, ํ•ด๋‹น ํ•ญ๋ชฉ์ด ๋ฆฌ์…ฐ์–ด ์—์ด์ „ํŠธ์˜ ํŒ”๋กœ์›Œ์—๊ฒŒ ํ‘œ์‹œ
    • ๋ฆฌ์…ฐ์–ด๋œ ํ•ญ๋ชฉ์ด ๊ฐœ์ธํ™”๋œ ํ”ผ๋“œ์—์„œ ์ถ”์ฒœ๋  ์ˆ˜ ์žˆ์Œ
    • ๊ฒฐ๊ณผ: ์ „ํŒŒ ์ฒด์ธ ํ˜•์„ฑ ๊ฐ€๋Šฅ (Vosoughi et al. 2018; Goel et al. 2016)

4.2 ์‹คํ—˜ ์„ค๊ณ„

4๊ฐ€์ง€ ๊ตฌ์„ฑ(Configuration)
๊ตฌ์„ฑ ์ •์ฒด์„ฑ ํ–‰๋™ ํŠน์„ฑ ์ถ”์ฒœ ์ „๋žต ๋ชฉ์ 
FullModel FinePersonas โœ“ 7๊ฐœ ํ”„๋กœํ•„ ์„ ํ˜ธ๋„ ๊ธฐ๋ฐ˜ ์ œ์•ˆ๋œ ์™„์ „ ํ”„๋ ˆ์ž„์›Œํฌ
IdentityOnly FinePersonas โœ— ์—†์Œ ์„ ํ˜ธ๋„ ๊ธฐ๋ฐ˜ ์›๋ณธ GABM ๋ฒ ์ด์Šค๋ผ์ธ
RandomRecommendation FinePersonas โœ“ 7๊ฐœ ํ”„๋กœํ•„ ๋ฌด์ž‘์œ„ ์ถ”์ฒœ ์ „๋žต ํšจ๊ณผ ๋ถ„๋ฆฌ
PsychometricTraits FinePersonas โœ— OCEAN ์„ฑ๊ฒฉ ์„ ํ˜ธ๋„ ๊ธฐ๋ฐ˜ ์‹ฌ๋ฆฌ์ธก์ • ์„ฑ๊ฒฉ ๋น„๊ต
์—์ด์ „ํŠธ ์ดˆ๊ธฐํ™”
  • 4๊ฐœ ์ฃผ์ œ ๋„๋ฉ”์ธ: Healthcare, Technology, Religion, Music
  • 140๊ฐœ ๊ณ ์œ  ์ •์ฒด์„ฑ ํ”„๋กœํ•„: ๊ฐ ๋„๋ฉ”์ธ๋‹น 35๊ฐœ FinePersonas
  • FullModel: 245 ์—์ด์ „ํŠธ/๋„๋ฉ”์ธ ร— 4 ๋„๋ฉ”์ธ = 980 ์—์ด์ „ํŠธ ์ด๊ณ„
  • ํ–‰๋™ ํ”„๋กœํ•„ ํ• ๋‹น: ๊ฐ ์ •์ฒด์„ฑ์— 7๊ฐœ ํ–‰๋™ ํ”„๋กœํ•„ ์ค‘ ํ•˜๋‚˜ ๊ท ํ˜• ํ• ๋‹น
  • IdentityOnly: ๋™์ผํ•œ 980 FinePersonas ํ”„๋กœํ•„, ํ–‰๋™ ํŠน์„ฑ ์—†์Œ
์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํŒŒ๋ผ๋ฏธํ„ฐ
  • ๋ฐ˜๋ณต ํšŸ์ˆ˜: 25๋ฒˆ
  • LLM: Llama 3 70B, Gemma 3 27B (๋‘˜ ๋ชจ๋‘ ์‹คํ—˜)
  • ์ดˆ๊ธฐํ™”: STM, LTM, AM ๋ชจ๋‘ ๋นˆ ์ƒํƒœ๋กœ ์ดˆ๊ธฐํ™”
  • ์ค‘๋‹จ ์กฐ๊ฑด: ์‚ฌ์ „ ์ •์˜๋œ ๋ฐ˜๋ณต ํšŸ์ˆ˜ ๋„๋‹ฌ
์•ก์…˜ ๊ณต๊ฐ„
  • ๊ฒŒ์‹œ(Post): ์›๋ณธ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ
  • ๋ฆฌ์…ฐ์–ด(Re-share): ํƒ€ ์—์ด์ „ํŠธ ์ฝ˜ํ…์ธ  ์žฌ๊ณต์œ 
  • ์ƒํ˜ธ์ž‘์šฉ(Interact): ์ข‹์•„์š”, ์‹ซ์–ด์š”, ๋Œ“๊ธ€
  • ํŒ”๋กœ์šฐ(Follow): ๋‹ค๋ฅธ ์—์ด์ „ํŠธ ํŒ”๋กœ์šฐ
  • ๋น„ํ™œ๋™(Inactive): ์•„๋ฌด ์•ก์…˜๋„ ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š์Œ

4.3 ํ‰๊ฐ€ ์ง€ํ‘œ ๋ฐ ๋ถ„์„ ๋ฐฉ๋ฒ•

ํ–‰๋™ ๋ถ„์„
  • ์•ก์…˜ ํ™•๋ฅ  ๋ถ„ํฌ: P_{\text{post}}, P_{\text{re-share}}, P_{\text{interact}}, P_{\text{inactive}}
  • ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ถ„์„: ์•ก์…˜ ํ™•๋ฅ  ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ ๊ตฐ์ง‘ํ™”
    • Elbow Method + Silhouette Score๋กœ ์ตœ์  k ๊ฒฐ์ •
    • ๊ตฐ์ง‘๊ณผ ํ–‰๋™ ํ”„๋กœํ•„ ๊ฐ„์˜ ์ •๋ ฌ ๊ฒ€์ฆ
์ „ํŒŒ ๋ถ„์„
  • 1์ฐจ ์•ก์…˜(First-order actions): ์›๋ณธ ์ฝ˜ํ…์ธ ์— ๋Œ€ํ•œ ์ง์ ‘ ์ฐธ์—ฌ
    • ์›๋ณธ ํฌ์ŠคํŠธ ๋ฆฌ์…ฐ์–ด
    • ์›๋ณธ ํฌ์ŠคํŠธ์— ์ข‹์•„์š”/์‹ซ์–ด์š”/๋Œ“๊ธ€
  • 2์ฐจ ์•ก์…˜(Second-order actions): ์ด๋ฏธ ๋ฆฌ์…ฐ์–ด๋œ ์ฝ˜ํ…์ธ ์— ๋Œ€ํ•œ ์ฐธ์—ฌ
    • ๋ฆฌ์…ฐ์–ด๋œ ํ•ญ๋ชฉ์˜ ์ถ”๊ฐ€ ๋ฆฌ์…ฐ์–ด
    • ๋ฆฌ์…ฐ์–ด๋œ ํ•ญ๋ชฉ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ
  • ์ „ํŒŒ ์ฒด์ธ ๊ธธ์ด: ๋‹จ์ผ ์›๋ณธ ํฌ์ŠคํŠธ์—์„œ ์—ฐ์‡„์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ๋ฆฌ์…ฐ์–ด ์‹œํ€€์Šค ๊ธธ์ด
๋„คํŠธ์›Œํฌ ๋ถ„์„
  • ์ค‘์‹ฌ์„ฑ ์ง€ํ‘œ(centrality metrics):
    • degree centrality: ๋…ธ๋“œ์˜ ์—ฐ๊ฒฐ ์ˆ˜
    • betweenness centrality: ์ตœ๋‹จ ๊ฒฝ๋กœ์— ๊ฐœ์žฌ๋˜๋Š” ๋นˆ๋„
    • eigenvector centrality: ์ค‘์š”ํ•œ ๋…ธ๋“œ์™€์˜ ์—ฐ๊ฒฐ ์ •๋„
  • ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์ •๋ ฌ:
    • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋„คํŠธ์›Œํฌ vs ์‹ค์ œ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ๊ฐ„์˜ ๊ตฌ์กฐ์  ์œ ์‚ฌ์„ฑ ์ธก์ •
์‹ค์ฆ ๊ฒ€์ฆ (RQ4)
  • ๋ฐ์ดํ„ฐ์…‹: ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ ๋ฐ์ดํ„ฐ
  • ์ปค๋ฎค๋‹ˆํ‹ฐ ์ถ”์ถœ: ์‹ค์ œ ์‚ฌ์šฉ์ž ์ปค๋ฎค๋‹ˆํ‹ฐ ์‹๋ณ„
  • ์‹ค์ฆ์  ์—์ด์ „ํŠธ ์ดˆ๊ธฐํ™”: ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์—์ด์ „ํŠธ ํ• ๋‹น
  • ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ๊ตฌ์กฐ์  ์ •๋ ฌ: ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ˜„์‹ค ๊ฐ„์˜ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋น„๊ต

5. ์ฃผ์š” ๊ฒฐ๊ณผ

RQ1: ํ–‰๋™ ํŠน์„ฑ์ด ์ด์งˆ์ ์ธ ์—์ด์ „ํŠธ ํ–‰๋™์˜ ์ถœํ˜„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

๊ฒฐ๊ณผ ์š”์•ฝ

ํ–‰๋™ ํŠน์„ฑ์ด ์—์ด์ „ํŠธ ๊ฒฐ์ •์— ์„ฑ๊ณต์ ์œผ๋กœ ์ œ์•ฝ์„ ๊ฐ€ํ•˜์—ฌ ์ด์งˆ์ ์ด๊ณ  ํ”„๋กœํ•„ ์ผ๊ด€์ ์ธ ํ–‰๋™์„ ์ƒ์„ฑ

ํ–‰๋™ ํ”„๋กœํ•„๋ณ„ ์•ก์…˜ ํ™•๋ฅ 
ํ”„๋กœํ•„ P_{\text{post}} P_{\text{re-share}} P_{\text{interact}} P_{\text{inactive}}
Proactive Contributor (PC) โ‰ˆ 99% ~0% ~0% ~0%
Silent Observer (SO) ~0% ~0% ~0% โ‰ˆ 99%
Balanced Participant (BP) 51.76% 46.58% ~1% ~1%
Content Amplifier (CA) ~2% 76.96% 21.43% ~0%
Interactive Enthusiast (IE) ~0% ~12% 86.67% ~1%
Occasional Engager (OE) ~0% ~5% 76.10% ~19%
Occasional Sharer (OS) ~0% ~35% ~10% ~55%
FullModel vs IdentityOnly ๋น„๊ต
  • IdentityOnly (ํ–‰๋™ ํŠน์„ฑ ์—†์Œ):
    • ๊ฒŒ์‹œ: 83.665% (๊ฐ•๋ ฅํ•œ ํŽธํ–ฅ)
    • ๋ฆฌ์…ฐ์–ด: 0.004%
    • ์ƒํ˜ธ์ž‘์šฉ: 16.269%
    • ๋น„ํ™œ๋™: 0.061%
    • ๊ฒฐ๊ณผ: ๋™์งˆ์ ์ธ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ ํŒจํ„ด
  • FullModel (ํ–‰๋™ ํŠน์„ฑ ์žˆ์Œ):
    • ๊ฒŒ์‹œ: 25.31%
    • ๋ฆฌ์…ฐ์–ด: 19.188%
    • ์ƒํ˜ธ์ž‘์šฉ: 25.478%
    • ๋น„ํ™œ๋™: 30.024%
    • ๊ฒฐ๊ณผ: ์ด์งˆ์ ์ธ ํ–‰๋™ ํŒจํ„ด
ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ถ„์„ ๊ฒฐ๊ณผ
  • FullModel ํด๋Ÿฌ์Šคํ„ฐ (k=5):
    • Cluster 3: Proactive Contributors๋งŒ ํฌํ•จ
    • Cluster 0: Balanced Participants๋งŒ ํฌํ•จ
    • Cluster 1: ์ˆ˜๋™์  ์—์ด์ „ํŠธ (Silent Observers, Occasional Sharers, Occasional Engagers)
    • Cluster 2: ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ์—์ด์ „ํŠธ (Interactive Enthusiasts, Content Amplifiers, Occasional Engagers)
    • Cluster 4: Content Amplifiers + Occasional Sharers (๋ฆฌ์…ฐ์–ด ํ–‰๋™ ํŠน์„ฑ)
  • IdentityOnly ํด๋Ÿฌ์Šคํ„ฐ (๊ณ ์ • ์ค‘์‹ฌ์— ํˆฌ์˜):
    • Cluster 3 (PC): 904๋ช… (92.2%)
    • Cluster 0 (BP): 18๋ช… (1.8%)
    • Cluster 2: 58๋ช… (5.9%)
    • Cluster 1, 4: 0๋ช… (๋น„์–ด์žˆ์Œ)
    • ๊ฒฐ๊ณผ: ๊ฐ•๋ ฅํ•œ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ ํŽธํ–ฅ, ๊ฑฐ์˜ ์ „์ฒด ์—์ด์ „ํŠธ๊ฐ€ PC ํด๋Ÿฌ์Šคํ„ฐ๋กœ ๋ถ•๊ดด
FullModel vs PsychometricTraits ๋น„๊ต
  • OCEAN ์„ฑ๊ฒฉ ํŠน์„ฑ (10๊ฐœ ํ”„๋กœํ•„):
    • ๋ชจ๋“  ์„ฑ๊ฒฉ์—์„œ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๋น„ํ™œ๋™์— ์ง‘์ค‘
    • ๋ฆฌ์…ฐ์–ด ๋ฐ ์ƒํ˜ธ์ž‘์šฉ ํ™•๋ฅ ์€ 0์— ๊ทผ์ ‘
    • ์ฐจ์ด์ : ์ผ๋ถ€ ํ”„๋กœํ•„(๋‚ฎ์€ ์™ธํ–ฅ์„ฑ, ๋†’์€ ์‹ ๊ฒฝ์งˆ)์—์„œ ๋น„ํ™œ๋™ ์ฆ๊ฐ€
  • ํ•ด์„:
    • OCEAN ์„ฑ๊ฒฉ์€ ์—์ด์ „ํŠธ๊ฐ€ ์–ผ๋งˆ๋‚˜ ํ–‰๋™ํ•˜๋Š”์ง€ ์กฐ์ ˆ
    • ํ–‰๋™ ํŠน์„ฑ์€ ์—์ด์ „ํŠธ๊ฐ€ ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€ ๊ทœ์ œ
    • ๋ช…์‹œ์  ํ–‰๋™ ํŠน์„ฑ ์—†์ด๋Š” ์ฐจ๋ณ„ํ™”๋œ ์ฐธ์—ฌ ์—ญํ•  ๋ถˆ๊ฐ€

RQ2: ํ–‰๋™ ํŠน์„ฑ์ด ์ฝ˜ํ…์ธ  ์ „ํŒŒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

์ฝ˜ํ…์ธ  ์ „ํŒŒ ์—ญํ•™
  • FullModel:
    • 1์ฐจ ์•ก์…˜: 59.17%
    • 2์ฐจ ์•ก์…˜: 40.83%
  • RandomRecommendation:
    • 1์ฐจ ์•ก์…˜: 51.92%
    • 2์ฐจ ์•ก์…˜: 48.08%
์‹œ๊ฐ„์  ์—ญํ•™ (FullModel)
  • ์ดˆ๊ธฐ: 1์ฐจ ์•ก์…˜๋งŒ ๊ด€์ฐฐ (์›๋ณธ ์ฝ˜ํ…์ธ  ํ’€ ์ œํ•œ)
  • ์ง„ํ–‰์— ๋”ฐ๋ผ: 1์ฐจ ์•ก์…˜ ๋น„์œจ ๊ฐ์†Œ, 2์ฐจ ์•ก์…˜ ์ฆ๊ฐ€
  • ๋ฐ˜๋ณต 19: 2์ฐจ ์•ก์…˜์ด 1์ฐจ ์•ก์…˜ ์ดˆ๊ณผ
  • ํ•ด์„: ์ „ํŒŒ ์ฒด์ธ ํ˜•์„ฑ, ์ด๋ฏธ ๋ฆฌ์…ฐ์–ด๋œ ์ฝ˜ํ…์ธ ์— ๋Œ€ํ•œ ์ฐธ์—ฌ ์ฆ๊ฐ€
์ฝ˜ํ…์ธ  ์ƒ์‚ฐ ์—ญํ•™
  • ์›๋ณธ vs ๋ฆฌ์…ฐ์–ด ์ฝ˜ํ…์ธ  ๋น„์œจ:
    • ์ดˆ๊ธฐ: 100% ์›๋ณธ (๋ฆฌ์…ฐ์–ด ํ•ญ๋ชฉ ๋ถˆ๊ฐ€)
    • ์ง„ํ–‰: ๋ฆฌ์…ฐ์–ด ์ฝ˜ํ…์ธ  ๋น„์œจ ์ฆ๊ฐ€
    • ์•ˆ์ •ํ™”: ์›๋ณธ๊ณผ ๋ฆฌ์…ฐ์–ด ์ฝ˜ํ…์ธ  ๊ท ํ˜• ์ƒํƒœ์—์„œ ํ‰ํ˜•
  • ๊ฒฐ๊ณผ: ํฌํ™” ๋ฐฉ์ง€, ๋‘ ๊ฐ€์ง€ ์ฝ˜ํ…์ธ  ์œ ํ˜•์˜ ๊ณต์กด ์œ ์ง€
์ „ํŒŒ ์ฒด์ธ ๋ถ„์„
  • ์ „ํŒŒ ์ฒด์ธ ๊ธธ์ด ๋ถ„ํฌ:
    • ๊ธธ์ด 2: ์›๋ณธ ์ฝ˜ํ…์ธ ๊ฐ€ 1ํšŒ ๋ฆฌ์…ฐ์–ด
    • ๊ธธ์ด 3+: ๋ฆฌ์…ฐ์–ด๋œ ์ฝ˜ํ…์ธ ์˜ ์ถ”๊ฐ€ ์ „ํŒŒ
  • ์ฃผ์š” ๋ฐœ๊ฒฌ:
    • ์ฆํญ ์ง€ํ–ฅ ํ”„๋กœํ•„(Content Amplifiers, Occasional Sharers)์ด ์ „ํŒŒ ์ฒด์ธ์˜ ํ•ต์‹ฌ ์—ญํ• 
    • ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ํ”„๋กœํ•„(Interactive Enthusiasts)์ด ์ฝ˜ํ…์ธ  ๊ฐ€์‹œ์„ฑ ๊ฐ•ํ™”
    • ๋‘ ํ”„๋กœํ•„ ์œ ํ˜•์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ํ˜„์‹ค์ ์ธ ์ „ํŒŒ ์—ญํ•™ ํ˜•์„ฑ

RQ3: ํ–‰๋™ ํŠน์„ฑ์ด ์—์ด์ „ํŠธ์˜ ๋„คํŠธ์›Œํฌ ์ค‘์‹ฌ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

๋„คํŠธ์›Œํฌ ์œ ํ˜• ๋ถ„์„
  • ๋ฆฌ์…ฐ์–ด ๋„คํŠธ์›Œํฌ: ๋ฆฌ์…ฐ์–ด ์•ก์…˜์œผ๋กœ ํ˜•์„ฑ
  • ์ƒํ˜ธ์ž‘์šฉ ๋„คํŠธ์›Œํฌ: ์ข‹์•„์š”/์‹ซ์–ด์š”/๋Œ“๊ธ€ ์•ก์…˜์œผ๋กœ ํ˜•์„ฑ
ํ–‰๋™ ํ”„๋กœํ•„๋ณ„ ์ค‘์‹ฌ์„ฑ
ํ”„๋กœํ•„ ์œ ํ˜• ๋ฆฌ์…ฐ์–ด ๋„คํŠธ์›Œํฌ ์ƒํ˜ธ์ž‘์šฉ ๋„คํŠธ์›Œํฌ
์ฆํญ ์ง€ํ–ฅ (CA, OS) ๋†’์€ ์ค‘์‹ฌ์„ฑ ๋‚ฎ์€ ์ค‘์‹ฌ์„ฑ
์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ (IE, OE) ๋‚ฎ์€ ์ค‘์‹ฌ์„ฑ ๋†’์€ ์ค‘์‹ฌ์„ฑ
๊ธฐ์—ฌ ์ง€ํ–ฅ (PC) ์ค‘๊ฐ„ ์ค‘์‹ฌ์„ฑ ๋‚ฎ์€ ์ค‘์‹ฌ์„ฑ
๊ท ํ˜• ์œ ์ง€ (BP) ์ค‘๊ฐ„ ์ค‘์‹ฌ์„ฑ ์ค‘๊ฐ„ ์ค‘์‹ฌ์„ฑ
์ˆ˜๋™ํ˜• (SO) ๋‚ฎ์€ ์ค‘์‹ฌ์„ฑ ๋‚ฎ์€ ์ค‘์‹ฌ์„ฑ
์ฃผ์š” ๋ฐœ๊ฒฌ
  1. ์ฆํญ ์ง€ํ–ฅ ์—์ด์ „ํŠธ:
    • ๋ฆฌ์…ฐ์–ด ๋„คํŠธ์›Œํฌ์—์„œ ๋†’์€ ์ค‘์‹ฌ์„ฑ ์ฐจ์ง€
    • ๋„คํŠธ์›Œํฌ์—์„œ ์ „ํŒŒ ํ—ˆ๋ธŒ ์—ญํ• 
    • ์ฝ˜ํ…์ธ  ์ „ํŒŒ์˜ ํ•ต์‹ฌ ๋™์ธ
  2. ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ์—์ด์ „ํŠธ:
    • ์ƒํ˜ธ์ž‘์šฉ ๋„คํŠธ์›Œํฌ์—์„œ ๋†’์€ ์ค‘์‹ฌ์„ฑ ์ฐจ์ง€
    • ์ฐธ์—ฌ ๋„คํŠธ์›Œํฌ์˜ ์ค‘์‹ฌ ๋…ธ๋“œ
    • ์ฝ˜ํ…์ธ  ๊ฐ€์‹œ์„ฑ ๋ฐ ์ฐธ์—ฌ ์œ ๋„
  3. ๊ตฌ์กฐ์  ์—ญํ•  ์ฐจ์ด:
    • ํ–‰๋™ ํ”„๋กœํ•„์ด ์‹ ํฅ ๋„คํŠธ์›Œํฌ์—์„œ ๋ช…ํ™•ํ•œ ๊ตฌ์กฐ์  ์—ญํ•  ํ˜•์„ฑ
    • ์ฆํญ vs ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ํ”„๋กœํ•„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ „ํŒŒ ์—ญํ•™ ๊ตฌ์กฐํ™”
Llama 3 vs Gemma 3 ๋น„๊ต
  • ๋‘ ๋ชจ๋ธ์—์„œ ์ผ๊ด€๋œ ํŒจํ„ด ๊ด€์ฐฐ
  • ์ค‘์‹ฌ์„ฑ ์ง€ํ‘œ์˜ ์ˆœ์œ„ ๋ฐ ์œ ํ˜• ์œ ์‚ฌ
  • ํ–‰๋™ ํŠน์„ฑ ํšจ๊ณผ์˜ LLM ๋…๋ฆฝ์„ฑ ํ™•์ธ

RQ4: ํ–‰๋™ ํŠน์„ฑ์ด ์‹ค์ œ ์†Œ์…œ ๋„คํŠธ์›Œํฌ๋ฅผ ์žฌํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ

๊ฒ€์ฆ ์ ‘๊ทผ๋ฒ•
  1. ๋ฐ์ดํ„ฐ์…‹ ๋ฐ ์ปค๋ฎค๋‹ˆํ‹ฐ ์ถ”์ถœ:
    • ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘
    • ์ปค๋ฎค๋‹ˆํ‹ฐ ์‹๋ณ„ ๋ฐ ํŠน์„ฑํ™”
  2. ์‹ค์ฆ์  ์—์ด์ „ํŠธ ์ดˆ๊ธฐํ™”:
    • ์‹ค์ œ ์ปค๋ฎค๋‹ˆํ‹ฐ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์—์ด์ „ํŠธ ํ• ๋‹น
    • ํ–‰๋™ ํ”„๋กœํ•„๊ณผ ์ •์ฒด์„ฑ ํ”„๋กœํ•„ ๊ท ํ˜• ๋ฐฐ์น˜
  3. ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ๊ตฌ์กฐ์  ์ •๋ ฌ:
    • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋„คํŠธ์›Œํฌ์™€ ์‹ค์ œ ๋„คํŠธ์›Œํฌ ๊ฐ„์˜ ๊ตฌ์กฐ์  ๋น„๊ต
๊ฒฐ๊ณผ ์š”์•ฝ
  • ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์ •๋ ฌ:
    • ํ–‰๋™ ํŠน์„ฑ์„ ํ™œ์šฉํ•œ FullModel์ด ์‹ค์ œ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ์™€ ๋†’์€ ์ •๋ ฌ ๋ณด์ž„
    • IdentityOnly ๋ฐ PsychometricTraits๋Š” ๋‚ฎ์€ ์ •๋ ฌ
  • ๊ตฌ์กฐ์  ํŠน์„ฑ ์žฌํ˜„:
    • ์†Œ๊ทœ๋ชจ ์†Œ์…œ ์ปค๋ฎค๋‹ˆํ‹ฐ์˜ ์ฐธ์—ฌ ํŒจํ„ด ์žฌํ˜„
    • ์‹ค์ œ ๋„คํŠธ์›Œํฌ์˜ ์ค‘์‹ฌ์„ฑ ๋ถ„ํฌ ์œ ์‚ฌ
  • ํ–‰๋™ ํŠน์„ฑ์˜ ์—ญํ• :
    • ์‹ค์ฆ์  ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์—์ด์ „ํŠธ ์ดˆ๊ธฐํ™” ์‹œ, ํ–‰๋™ ํŠน์„ฑ์ด ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ์  ์ •๋ ฌ ํ•„์ˆ˜์ 
    • “์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€” ๋ชจ๋ธ๋ง์ด ํ˜„์‹ค ์„ธ๊ณ„์™€ ์ •๋ ฌ์— ํ•ต์‹ฌ

6. ๋…ผ์˜ ๋ฐ ํ•ด์„

์—ฐ๊ตฌ์˜ ์ฃผ์š” ์‹œ์‚ฌ์ 

1. “๋ˆ„๊ตฌ์ธ์ง€” vs “์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€”
  • ๊ธฐ์กด GABM์˜ ํ•œ๊ณ„: ์ •์ฒด์„ฑ ํŠน์„ฑ๋งŒ์œผ๋กœ๋Š” ์ด์งˆ์ ์ธ ํ–‰๋™ ๋ถˆ๊ฐ€
  • ๋ณธ ์—ฐ๊ตฌ์˜ ๊ธฐ์—ฌ: ํ–‰๋™ ํŠน์„ฑ์ด ๋ช…์‹œ์  ํŠน์„ฑํ™” ๊ณ„์ธต์œผ๋กœ ํ•„์ˆ˜์ 
  • ์‹ค์ฒœ์  ๊ฐ€์ด๋“œ๋ผ์ธ:
    • ์—์ด์ „ํŠธ ์ •์ฒด์„ฑ + ํ–‰๋™ ํŠน์„ฑ ์ด์ค‘ ๊ณ„์ธต ํ•„์ˆ˜
    • ๋‹จ์ผ ๊ณ„์ธต(์ •์ฒด์„ฑ ๋˜๋Š” ์‹ฌ๋ฆฌ์ธก์ • ์„ฑ๊ฒฉ)์œผ๋กœ๋Š” ์ฐจ๋ณ„ํ™”๋œ ์—ญํ•  ๋ถˆ๊ฐ€
2. ํ–‰๋™ ํŠน์„ฑ์˜ ์‹ค์ฆ์  ๊ทผ๊ฑฐ
  • ์‚ฌ์šฉ์ž ์œ ํ˜•ํ•™๊ณผ ์ •๋ ฌ: 7๊ฐ€์ง€ ํ”„๋กœํ•„์ด ์‹ค์ฆ์  ์—ฐ๊ตฌ์™€ ์ผ์น˜
  • ํ”„๋กœํ•„ ์œ ์—ฐ์„ฑ: ์—„๊ฒฉํ•œ ๊ฒฝ๊ณ„๊ฐ€ ์•„๋‹Œ ๊ฒฝํ–ฅ์  ํŠน์„ฑ์œผ๋กœ ์„ค๊ณ„
    • ์ฃผ์š” ํ–‰๋™ ์„ฑํ–ฅ ์œ ์ง€ํ•˜๋ฉฐ ๊ฐ„ํ—์  ํƒ€ ์•ก์…˜ ๊ฐ€๋Šฅ
    • ํ˜„์‹ค ์„ธ๊ณ„ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ์œ ์—ฐ์„ฑ ๋ฐ˜์˜
3. ์ „ํŒŒ ์—ญํ•™์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์  ์ดํ•ด
  • ์ฆํญ ์ง€ํ–ฅ vs ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ:
    • ๋‘ ํ”„๋กœํ•„ ์œ ํ˜•์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ „ํŒŒ ์—ญํ•™ ํ˜•์„ฑ
    • ๋‹จ์ผ ํ”„๋กœํ•„ ์œ ํ˜•์œผ๋กœ๋Š” ํ˜„์‹ค์ ์ธ ์ „ํŒŒ ๋ถˆ๊ฐ€
  • ์ „ํŒŒ ์ฒด์ธ ํ˜•์„ฑ ์กฐ๊ฑด:
    • ๋ฆฌ์…ฐ์–ด ์ฝ˜ํ…์ธ ์˜ ํŒ”๋กœ์›Œ ํ”ผ๋“œ ์ „ํŒŒ ํ•„์ˆ˜
    • 1์ฐจ ์•ก์…˜์—์„œ 2์ฐจ ์•ก์…˜์œผ๋กœ์˜ ์ „์ด ํ•„์š”
4. ๊ตฌ์กฐ์  ์—ญํ• ์˜ ์ด์งˆ์„ฑ
  • ๋„คํŠธ์›Œํฌ ์ค‘์‹ฌ์„ฑ ์ฐจ์ด:
    • ํ–‰๋™ ํ”„๋กœํ•„์ด ์‹ ํฅ ๋„คํŠธ์›Œํฌ์—์„œ ๋ช…ํ™•ํ•œ ๊ตฌ์กฐ์  ์—ญํ•  ํ˜•์„ฑ
    • ์ฆํญ ์ง€ํ–ฅ: ๋ฆฌ์…ฐ์–ด ๋„คํŠธ์›Œํฌ ์ค‘์‹ฌ
    • ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ: ์ƒํ˜ธ์ž‘์šฉ ๋„คํŠธ์›Œํฌ ์ค‘์‹ฌ
  • ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์—ญํ•™:
    • ๊ฐœ๋ณ„ ํ–‰๋™์ด ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ํ˜„์ƒ์˜ ๊ธฐ์ดˆ
    • ์ด์งˆ์  ํ–‰๋™์ด ํ˜„์‹ค์ ์ธ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ์˜ ์ „์ œ ์กฐ๊ฑด
5. ์‹ค์ฆ์  ๊ฒ€์ฆ์˜ ์ค‘์š”์„ฑ
  • ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€ ์ •๋ ฌ:
    • ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ˜„์‹ค ์„ธ๊ณ„ ๊ฐ„์˜ ๊ตฌ์กฐ์  ์œ ์‚ฌ์„ฑ ๊ฒ€์ฆ ํ•„์ˆ˜
    • ํ–‰๋™ ํŠน์„ฑ์ด ์ •๋ ฌ์˜ ํ•ต์‹ฌ ์š”์ธ
  • ์™ธ๋ถ€ ํƒ€๋‹น์„ฑ:
    • ์‹ค์ œ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์˜ ์ฐธ์—ฌ ํŒจํ„ด ๋ฐ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์žฌํ˜„
    • GABM์˜ ์‹ค์šฉ์„ฑ ๊ฐ•ํ™”

7. ํ•œ๊ณ„ ๋ฐ ์ œ์–ธ

์—ฐ๊ตฌ์˜ ํ•œ๊ณ„

1. ํ–‰๋™ ํ”„๋กœํ•„์˜ ํ•œ์ •๋œ ๋‹ค์–‘์„ฑ
  • 7๊ฐ€์ง€ ํ”„๋กœํ•„: ์‹ค์ œ ์‚ฌ์šฉ์ž์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์™„์ „ํžˆ ํฌ๊ด„ํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์Œ
  • ํ”„๋กœํ•„ ๊ฐ„ ์ค‘๋ณต: ๊ฒฝ๊ณ„๊ฐ€ ๋ช…ํ™•ํ•˜์ง€ ์•Š๊ณ  ์ค‘๋ณต ๊ฐ€๋Šฅ
  • ๊ฐœ์ธ ์ˆ˜์ค€ ์ฐจ์ด: ๋™์ผ ํ”„๋กœํ•„ ๋‚ด์—์„œ์˜ ๊ฐœ๋ณ„ ์ฐจ์ด ๋ฏธํƒ๊ตฌ
2. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์˜ ๋‹จ์ˆœํ™”
  • ์•ก์…˜ ๊ณต๊ฐ„ ์ œํ•œ: ๊ฒŒ์‹œ, ๋ฆฌ์…ฐ์–ด, ์ข‹์•„์š”/์‹ซ์–ด์š”/๋Œ“๊ธ€, ํŒ”๋กœ์šฐ, ๋น„ํ™œ๋™๋งŒ ๊ณ ๋ ค
  • ์ฝ˜ํ…์ธ  ์œ ํ˜• ๋‹จ์ˆœํ™”: ํ…์ŠคํŠธ ์ฝ˜ํ…์ธ ์—๋งŒ ์ง‘์ค‘, ์ด๋ฏธ์ง€/๋น„๋””์˜ค ๋ฏธ๊ณ ๋ ค
  • ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋‹จ์ˆœํ™”: ์‹ค์ œ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์˜ ๋ณต์žก์„ฑ ๋ฏธ์™„์ „ ๋ฐ˜์˜
3. LLM ํŽธํ–ฅ์„ฑ์˜ ์˜ํ–ฅ
  • ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ํŽธํ–ฅ: LLM์ด ํŠน์ • ํ–‰๋™ ํŒจํ„ด์— ํŽธํ–ฅ๋  ์ˆ˜ ์žˆ์Œ
  • ๋ฌธํ™”์  ํ•œ๊ณ„: ์˜์–ด๊ถŒ ๋ฐ์ดํ„ฐ์— ์ฃผ๋กœ ํ›ˆ๋ จ๋œ LLM์œผ๋กœ ๋‹ค๋ฅธ ๋ฌธํ™”์  ๋งฅ๋ฝ ๋ฏธ๋ฐ˜์˜
  • ์‹œ๊ฐ„์  ์ œ์•ฝ: 25๋ฒˆ ๋ฐ˜๋ณต์ด ์žฅ๊ธฐ๊ฐ„ ์—ญํ•™ ์žฌํ˜„์— ๋ถˆ์ถฉ๋ถ„ํ•  ์ˆ˜ ์žˆ์Œ
4. ๊ฒ€์ฆ์˜ ์ œ์•ฝ
  • ๋‹จ์ผ ํ”Œ๋žซํผ: ํŠน์ • ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—๋งŒ ๊ฒ€์ฆ
  • ๊ต์ฐจ ์ผ๋ฐ˜ํ™”: ๋‹ค๋ฅธ ํ”Œ๋žซํผ ๋˜๋Š” ๋„๋ฉ”์ธ์œผ๋กœ์˜ ์ผ๋ฐ˜ํ™” ๋ฏธ๊ฒ€์ฆ
  • ํ‘œ๋ณธ ํฌ๊ธฐ: 980 ์—์ด์ „ํŠธ๊ฐ€ ๋Œ€๊ทœ๋ชจ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์˜ ๋ณต์žก์„ฑ ๋ฐ˜์˜์— ํ•œ๊ณ„

ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

1. ํ–‰๋™ ํ”„๋กœํ•„์˜ ํ™•์žฅ
  • ์„ธ๋ถ„ํ™”๋œ ํ”„๋กœํ•„: ๊ธฐ์กด 7๊ฐœ ํ”„๋กœํ•„์„ ๋” ์„ธ๋ถ„ํ™”ํ•˜์—ฌ ์ŠคํŽ™ํŠธ๋Ÿผ ํ™•์žฅ
  • ๋™์  ํ–‰๋™ ํŠน์„ฑ: ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ํ–‰๋™ ๋ณ€ํ™” ๋ชจ๋ธ๋ง (์˜ˆ: ์ฝ˜ํ…์ธ  ํ”ผ๋กœ๋„, ๊ด€์‹ฌ์‚ฌ ์ด๋™)
  • ์ƒํ˜ธ์ž‘์šฉ์  ํ”„๋กœํ•„: ๋‹ค๋ฅธ ์—์ด์ „ํŠธ์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์— ๋”ฐ๋ฅธ ํ–‰๋™ ๋ณ€ํ™”
2. ๋ณต์žกํ•œ ํ–‰๋™ ๋ฐ ์ฝ˜ํ…์ธ  ๋ชจ๋ธ๋ง
  • ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ฝ˜ํ…์ธ : ์ด๋ฏธ์ง€, ๋น„๋””์˜ค, ์˜ค๋””์˜ค ํฌํ•จ
  • ๊ฐ์ • ๋ชจ๋ธ๋ง: ์ฝ˜ํ…์ธ  ๊ฐ์ • ๋ฐ ์—์ด์ „ํŠธ ๊ฐ์ • ๋ฐ˜์‘
  • ์ปจํ…์ŠคํŠธ ์ธ์‹: ์‹œ๊ฐ„์ , ๊ณต๊ฐ„์ , ์‚ฌํšŒ์  ์ปจํ…์ŠคํŠธ ํ†ตํ•ฉ
3. ๋„คํŠธ์›Œํฌ ์—ญํ•™์˜ ์‹ฌ์ธต ๋ถ„์„
  • ๋‹ค๊ณ„์ธต ๋„คํŠธ์›Œํฌ: ๋ณต์ˆ˜ ๋„คํŠธ์›Œํฌ(์˜ˆ: ์นœ๊ตฌ ๋„คํŠธ์›Œํฌ, ํŒ”๋กœ์šฐ ๋„คํŠธ์›Œํฌ, ์ƒํ˜ธ์ž‘์šฉ ๋„คํŠธ์›Œํฌ)์˜ ํ†ตํ•ฉ
  • ์—ญํ•™ ๋„คํŠธ์›Œํฌ(Dynamic Networks): ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ์˜ ์‹œ๊ฐ„์  ์ง„ํ™” ๋ชจ๋ธ๋ง
  • ๊ณต๋™์ฒด ํ˜•์„ฑ: ์—์ด์ „ํŠธ ๊ทธ๋ฃน ๋ฐ ์ปค๋ฎค๋‹ˆํ‹ฐ ํ˜•์„ฑ ์—ญํ•™
4. ์‹ค์ฆ์  ๊ฒ€์ฆ ๊ฐ•ํ™”
  • ๋‹ค์ค‘ ํ”Œ๋žซํผ ๊ฒ€์ฆ: Twitter, Reddit, Facebook ๋“ฑ ๋‹ค์ค‘ ํ”Œ๋žซํผ์—์„œ ๊ฒ€์ฆ
  • ์žฅ๊ธฐ๊ฐ„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜: ๋” ๊ธด ์‹œ๊ฐ„ ๊ทœ๋ชจ๋กœ์˜ ํ–‰๋™ ๋ณ€ํ™” ๋ฐ ๋„คํŠธ์›Œํฌ ์ง„ํ™” ๊ด€์ฐฐ
  • ์‹ค์ œ ๋ฐ์ดํ„ฐ ํ†ตํ•ฉ: ์‹ค์ œ ์‚ฌ์šฉ์ž ํ–‰๋™ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ํ†ตํ•ฉ(์˜ˆ: ๊ฐ•ํ™” ํ•™์Šต)
5. ์ด๋ก ์  ํ†ตํ•ฉ ๋ฐ ์‘์šฉ
  • ์‚ฌํšŒ๊ณผํ•™ ์ด๋ก ๊ณผ์˜ ํ†ตํ•ฉ: ์‚ฌํšŒ์‹ฌ๋ฆฌํ•™, ์‚ฌํšŒํ•™ ์ด๋ก ์„ GABM์— ํ†ตํ•ฉ
  • ์ •์ฑ… ์‹œ๋ฎฌ๋ ˆ์ด์…˜: ํ—ˆ์œ„์ •๋ณด ์ „ํŒŒ ๋ฐฉ์ง€, ์˜จ๋ผ์ธ ๋…์„ฑ ์™„ํ™” ๋“ฑ ์ •์ฑ… ์‹œ๋ฎฌ๋ ˆ์ด์…˜
  • ๊ฐœ์ธํ™” ์ถ”์ฒœ: ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ๊ฐœ์ธํ™” ์ถ”์ฒœ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

๐Ÿ“Œ 3๋‹จ๊ณ„: ๋น„ํŒ์  ํ‰๊ฐ€

๋ฐฉ๋ฒ•๋ก ์  ํƒ€๋‹น์„ฑ

๊ฐ•์ 

  1. ์—„๊ฒฉํ•œ ๋น„๊ต ์‹คํ—˜ ์„ค๊ณ„:
    • 4๊ฐ€์ง€ ๊ตฌ์„ฑ(FullModel, IdentityOnly, RandomRecommendation, PsychometricTraits)์„ ํ†ตํ•œ ์ฒด๊ณ„์  ๋น„๊ต
    • ํ–‰๋™ ํŠน์„ฑ์˜ ํšจ๊ณผ๋ฅผ ๋‹ค๋ฅธ ์š”์†Œ(์ถ”์ฒœ ์ „๋žต, ์‹ฌ๋ฆฌ์ธก์ • ์„ฑ๊ฒฉ)๋กœ๋ถ€ํ„ฐ ๋ถ„๋ฆฌ
  2. ์ด์ค‘ ๊ณ„์ธต ์•„ํ‚คํ…์ฒ˜์˜ ์ด๋ก ์  ๊ทผ๊ฑฐ:
    • ์ •์ฒด์„ฑ(Identity) + ํ–‰๋™(Behavior) ๊ณ„์ธต์ด ์‚ฌ์šฉ์ž ํ–‰๋™ ์ด๋ก ๊ณผ ์ •๋ ฌ
    • FinePersonas ๋ฐ์ดํ„ฐ์…‹ ํ™œ์šฉ์œผ๋กœ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ •์ฒด์„ฑ ํŠน์„ฑ ์ œ๊ณต
  3. ํ–‰๋™ ์ผ๊ด€์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜:
    • ํ™œ๋™ ๋ฉ”๋ชจ๋ฆฌ(Activity Memory) ๋„์ž…์œผ๋กœ ํ–‰๋™ ์ผ๊ด€์„ฑ ์œ ์ง€
    • ์ด๋ก ์  ์„ค๊ณ„์˜ ์‹ค์ฒœ์  ๊ตฌํ˜„
  4. ๋Œ€๊ทœ๋ชจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜:
    • 980 ์—์ด์ „ํŠธ, 25๋ฒˆ ๋ฐ˜๋ณต, ๋‘ ๊ฐ€์ง€ LLM ์‚ฌ์šฉ
    • ๊ฒฐ๊ณผ์˜ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ์„ฑ ๊ฐ•ํ™”
  5. ๋‹ค์ฐจ์›์  ํ‰๊ฐ€:
    • ํ–‰๋™ ์ˆ˜์ค€(์•ก์…˜ ํ™•๋ฅ ), ์ „ํŒŒ ์ˆ˜์ค€(1์ฐจ/2์ฐจ ์•ก์…˜), ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€(์ค‘์‹ฌ์„ฑ) ํ‰๊ฐ€
    • ๋‹ค์ธต ๋ถ„์„์œผ๋กœ ํšจ๊ณผ์˜ ์ข…ํ•ฉ์  ์ดํ•ด ๊ฐ€๋Šฅ

์•ฝ์ 

  1. ํ–‰๋™ ํ”„๋กœํ•„์˜ ์ œ์•ฝ:
    • 7๊ฐ€์ง€ ํ”„๋กœํ•„์ด ์‹ค์ œ ์‚ฌ์šฉ์ž ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์™„์ „ํžˆ ํฌ๊ด„ํ•˜๋Š”์ง€ ์˜๋ฌธ
    • ํ”„๋กœํ•„ ๊ฐ„์˜ ๊ฒฝ๊ณ„๊ฐ€ ๋ช…ํ™•ํ•˜์ง€ ์•Š๊ณ  ์ค‘๋ณต ๊ฐ€๋Šฅ
  2. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์˜ ๋‹จ์ˆœํ™”:
    • ์•ก์…˜ ๊ณต๊ฐ„์ด ์ œํ•œ์ ์ด์–ด ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด์˜ ๋ณต์žก์„ฑ ๋ฐ˜์˜ ๋ถˆ์ถฉ๋ถ„
    • ์ฝ˜ํ…์ธ  ์œ ํ˜•์ด ํ…์ŠคํŠธ์—๋งŒ ์ง‘์ค‘
  3. LLM ํŽธํ–ฅ์„ฑ์˜ ์˜ํ–ฅ:
    • LLM์ด ํŠน์ • ํ–‰๋™ ํŒจํ„ด์— ํŽธํ–ฅ๋  ์ˆ˜ ์žˆ์–ด ๊ฒฐ๊ณผ์— ์˜ํ–ฅ
    • ์˜์–ด๊ถŒ ๋ฐ์ดํ„ฐ์— ์ฃผ๋กœ ํ›ˆ๋ จ๋œ LLM์œผ๋กœ ๋ฌธํ™”์  ํŽธํ–ฅ ๊ฐ€๋Šฅ
  4. ๊ฒ€์ฆ์˜ ์ œ์•ฝ:
    • ๋‹จ์ผ ํ”Œ๋žซํผ ๊ฒ€์ฆ์œผ๋กœ ๋‹ค์ค‘ ํ”Œ๋žซํผ ์ผ๋ฐ˜ํ™” ๋ฏธ๊ฒ€์ฆ
    • ์‹ค์ œ ์‚ฌ์šฉ์ž ๋ฐ์ดํ„ฐ์˜ ์™„์ „ํ•œ ํ†ตํ•ฉ ์•„๋‹Œ, ์ฃผ๋กœ ๊ตฌ์กฐ์  ์ •๋ ฌ์— ์ง‘์ค‘

๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ

๊ฐ•์ 

  1. ๋ช…ํ™•ํ•œ ์—ฐ๊ตฌ ์งˆ๋ฌธ ๊ตฌ์กฐ:
    • 4๊ฐ€์ง€ ์—ฐ๊ตฌ ์งˆ๋ฌธ(RQ1-RQ4)์ด ๋…ผ๋ฆฌ์ ์œผ๋กœ ์—ฐ๊ฒฐ
    • ๊ฐœ๋ณ„ ์ˆ˜์ค€(RQ1)์—์„œ ์‹œ์Šคํ…œ ์ˆ˜์ค€(RQ4)์œผ๋กœ์˜ ์ผ๊ด€์ ์ธ ํ๋ฆ„
  2. ์ด๋ก ์  ๊ทผ๊ฑฐ์™€ ์ผ์น˜:
    • ํ–‰๋™ ํ”„๋กœํ•„์ด ์‹ค์ฆ์  ์‚ฌ์šฉ์ž ์œ ํ˜•ํ•™๊ณผ ์ผ์น˜
    • ์ „ํŒŒ ์ฒด์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋„คํŠธ์›Œํฌ ์ด๋ก (Vosoughi et al. 2018)๊ณผ ์ •๋ ฌ
  3. ๊ฒฐ๊ณผ์™€ ํ•ด์„์˜ ์ผ๊ด€์„ฑ:
    • RQ1 ๊ฒฐ๊ณผ(ํ–‰๋™ ์ด์งˆ์„ฑ)๊ฐ€ RQ2(์ „ํŒŒ ์—ญํ•™)์™€ RQ3(๋„คํŠธ์›Œํฌ ์ค‘์‹ฌ์„ฑ)์œผ๋กœ ์—ฐ๊ฒฐ
    • RQ4 ๊ฒฐ๊ณผ(์‹ค์ฆ์  ๊ฒ€์ฆ)๊ฐ€ ์„ ํ–‰ ์—ฐ๊ตฌ ์งˆ๋ฌธ์˜ ์œ ํšจ์„ฑ์„ ๋’ท๋ฐ›์นจ

์•ฝ์ 

  1. ์ธ๊ณผ ๊ด€๊ณ„์˜ ๋ชจํ˜ธ์„ฑ:
    • ์ƒ๊ด€ ๊ด€๊ณ„์™€ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜์ง€ ์•Š์Œ
    • ์ถ”๊ฐ€์ ์ธ ์กฐ์ž‘ ๊ฒ€์ฆ ํ•„์š”
  2. ๊ฒฝ์Ÿ์  ๊ฐ€์„ค ๋น„๊ต ๋ถ€์กฑ:
    • ๋ณธ ์—ฐ๊ตฌ ์ œ์•ˆ ์ ‘๊ทผ๋ฒ•๋งŒ ๊ฒ€์ฆ, ๋Œ€์•ˆ ์ ‘๊ทผ๋ฒ•๊ณผ์˜ ๋น„๊ต ๋ถ€์กฑ
    • ๋‹ค๋ฅธ ํ–‰๋™ ํŠน์„ฑํ™” ๋ฐฉ๋ฒ•(์˜ˆ: ํ•™์Šต ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•)๊ณผ์˜ ๋น„๊ต ๋ฏธ์‹คํ–‰

๊ธฐ์—ฌ๋„ ํ‰๊ฐ€

์ด๋ก ์  ๊ธฐ์—ฌ

  1. ํ–‰๋™ ํŠน์„ฑ์˜ ๋ช…์‹œ์  ํŠน์„ฑํ™”:
    • “๋ˆ„๊ตฌ์ธ์ง€”์™€ “์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€”๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ์ด๋ก ์  ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์•ˆ
    • GABM์—์„œ์˜ ํ–‰๋™ ํŠน์„ฑ์˜ ์ค‘์š”์„ฑ์„ ๋ช…ํ™•ํžˆ ๊ทœ๋ช…
  2. 2๊ณ„์ธต ํ”„๋กœํ•„ ์•„ํ‚คํ…์ฒ˜:
    • ์ •์ฒด์„ฑ + ํ–‰๋™ ์ด์ค‘ ๊ณ„์ธต์˜ ์ด๋ก ์  ๊ธฐ์—ฌ
    • ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ์ •์ฒด์„ฑ ํŽธํ–ฅ ๋ฌธ์ œ ํ•ด๊ฒฐ
  3. ์ „ํŒŒ ์—ญํ•™์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์  ์ดํ•ด:
    • ์ฆํญ ์ง€ํ–ฅ vs ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ํ”„๋กœํ•„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ „ํŒŒ ์—ญํ•™ ์„ค๋ช…
    • ์ „ํŒŒ ์ฒด์ธ ํ˜•์„ฑ ์กฐ๊ฑด ๋ช…ํ™•ํžˆ ๊ทœ๋ช…
  4. ์‹ค์ฆ์  ๊ฒ€์ฆ์˜ ์ค‘์š”์„ฑ ๊ฐ•์กฐ:
    • ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ˜„์‹ค ์„ธ๊ณ„ ๊ฐ„์˜ ๊ตฌ์กฐ์  ์ •๋ ฌ ๊ฒ€์ฆ์˜ ์ค‘์š”์„ฑ ๊ฐ•์กฐ
    • GABM์˜ ์™ธ๋ถ€ ํƒ€๋‹น์„ฑ ๊ฐ•ํ™”

์‹ค์ฒœ์  ๊ธฐ์—ฌ

  1. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ:
    • ํ–‰๋™ ํŠน์„ฑ, ํ™œ๋™ ๋ฉ”๋ชจ๋ฆฌ, ์ „ํŒŒ ์ฒด์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํฌํ•จํ•˜๋Š” ์™„์ „ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ
    • ๊ณต๊ฐœ ์ฝ”๋“œ๋กœ ์—ฐ๊ตฌ ์žฌํ˜„ ๊ฐ€๋Šฅ
  2. ํ–‰๋™ ํ”„๋กœํ•„ ์ •์˜:
    • 7๊ฐ€์ง€ ์ „ํ˜•์  ํ–‰๋™ ํ”„๋กœํ•„์˜ ์ฒด๊ณ„์  ์ •์˜
    • ์‹ค์ฆ์  ๊ทผ๊ฑฐ์— ๊ธฐ๋ฐ˜ํ•œ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ํ”„๋กœํ•„
  3. ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋ก :
    • ํ–‰๋™, ์ „ํŒŒ, ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์˜ ๋‹ค์ฐจ์›์  ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋ก 
    • ํด๋Ÿฌ์Šคํ„ฐ๋ง, ์ค‘์‹ฌ์„ฑ ๋ถ„์„ ๋“ฑ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋ถ„์„ ํˆดํ‚ท ์ œ๊ณต

ํ•œ๊ณ„ ๋ฐ ๋ฏธ๋ž˜ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ๊ธฐ์—ฌ

  1. ํ–‰๋™ ํŠน์„ฑ์˜ ํ™•์žฅ ํ•„์š”์„ฑ:
    • 7๊ฐ€์ง€ ํ”„๋กœํ•„์˜ ํ•œ๊ณ„ ๋ช…ํ™•ํžˆ ์ธ์‹
    • ์„ธ๋ถ„ํ™”๋œ ํ”„๋กœํ•„, ๋™์  ํ–‰๋™ ํŠน์„ฑ, ์ƒํ˜ธ์ž‘์šฉ์  ํ”„๋กœํ•„์˜ ํ•„์š”์„ฑ ์ œ์–ธ
  2. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์˜ ๋ณต์žก์„ฑ ํ•„์š”์„ฑ:
    • ์•ก์…˜ ๊ณต๊ฐ„, ์ฝ˜ํ…์ธ  ์œ ํ˜•์˜ ํ™•์žฅ ํ•„์š”์„ฑ ์ œ์–ธ
    • ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ฝ˜ํ…์ธ , ๊ฐ์ • ๋ชจ๋ธ๋ง, ์ปจํ…์ŠคํŠธ ์ธ์‹์˜ ํ•„์š”์„ฑ ์ œ์–ธ

์‹ค๋ฌด ์ ์šฉ ํฌ์ธํŠธ

1. ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ ์„ค๊ณ„

  • ์‚ฌ์šฉ์ž ์ฐธ์—ฌ ํŒจํ„ด ์ดํ•ด:
    • ํ–‰๋™ ํŠน์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ฐธ์—ฌ ํŒจํ„ด์˜ ์ด์งˆ์„ฑ ์ดํ•ด
    • ์ฆํญ ์ง€ํ–ฅ vs ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ์‚ฌ์šฉ์ž๋ฅผ ์‹๋ณ„ํ•˜์—ฌ ๊ฐœ์ธํ™”๋œ ๊ฒฝํ—˜ ์ œ๊ณต
  • ์ฝ˜ํ…์ธ  ์ „ํŒŒ ์ตœ์ ํ™”:
    • ์ฆํญ ์ง€ํ–ฅ ์‚ฌ์šฉ์ž๋ฅผ ํ†ตํ•ด ์ฝ˜ํ…์ธ  ๊ฐ€์‹œ์„ฑ ๊ฐ•ํ™”
    • ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ์‚ฌ์šฉ์ž๋ฅผ ํ†ตํ•ด ์ฐธ์—ฌ ์œ ๋„

2. ์˜จ๋ผ์ธ ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ด€๋ฆฌ

  • ์ฐธ์—ฌ ํŒจํ„ด ๋ถ„์„:
    • ํ–‰๋™ ํŠน์„ฑ ๋ถ„๋ฅ˜๋ฅผ ํ†ตํ•ด ์ปค๋ฎค๋‹ˆํ‹ฐ ๋‚ด์˜ ์ฐธ์—ฌ ํŒจํ„ด ๋ถ„์„
    • ๋Šฅ๋™์  ๊ธฐ์—ฌ์ž, ๊ด€์ฐฐ์ž ๋“ฑ์˜ ๋ถ„ํฌ ํŒŒ์•…
  • ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ฑด์ „์„ฑ:
    • ๋น„ํ™œ๋™ ์‚ฌ์šฉ์ž(Silent Observers)๋ฅผ ๋Šฅ๋™์  ์ฐธ์—ฌ๋กœ ์œ ๋„
    • ๊ณผ๋„ํ•œ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ ์–ต์ œ ๋“ฑ ๊ฑด์ „ํ•œ ์ฐธ์—ฌ ํŒจํ„ด ์กฐ์„ฑ

3. ํ—ˆ์œ„์ •๋ณด ๋ฐ ์˜จ๋ผ์ธ ๋…์„ฑ ์™„ํ™”

  • ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„:
    • ์ฆํญ ์ง€ํ–ฅ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ํŒจํ„ด์„ ํ†ตํ•ด ํ—ˆ์œ„์ •๋ณด ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„
    • ์ „ํŒŒ ์ฒด์ธ์˜ ํ•ต์‹ฌ ๋…ธ๋“œ ์‹๋ณ„
  • ๊ฐœ์ž… ์ „๋žต:
    • ์ „ํŒŒ ์ฒด์ธ์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ ๊ฐœ์ž…ํ•˜์—ฌ ์ „ํŒŒ ๋ฐฉ์ง€
    • ์ƒํ˜ธ์ž‘์šฉ ์ง€ํ–ฅ ์‚ฌ์šฉ์ž๋ฅผ ํ†ตํ•ด ์‚ฌ์‹ค์  ์ฝ˜ํ…์ธ  ๊ฐ•ํ™”

4. ๊ฐœ์ธํ™” ์ถ”์ฒœ ์‹œ์Šคํ…œ

  • ํ–‰๋™ ํ”„๋กœํ•„ ๊ธฐ๋ฐ˜ ์ถ”์ฒœ:
    • ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ํŠน์„ฑ์„ ์‹๋ณ„ํ•˜์—ฌ ๊ฐœ์ธํ™”๋œ ์ถ”์ฒœ ์ œ๊ณต
    • Silent Observers์—๊ฒŒ ๊ด€์‹ฌ์‚ฌ ๊ธฐ๋ฐ˜ ์ฝ˜ํ…์ธ  ์ถ”์ฒœ, Proactive Contributors์—๊ฒŒ ๋ฆฌ์…ฐ์–ด ๊ธฐ๋ฐ˜ ์ถ”์ฒœ
  • ์ฐธ์—ฌ ์œ ๋„:
    • ํ–‰๋™ ํŠน์„ฑ์— ๋”ฐ๋ฅธ ์ฐธ์—ฌ ์œ ๋„ ์ „๋žต ์ˆ˜๋ฆฝ
    • Occasional Sharers์—๊ฒŒ ์›๋ณธ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ ์œ ๋„, Occasional Engagers์—๊ฒŒ ์ƒํ˜ธ์ž‘์šฉ ๊ฐ•ํ™”

5. ๋งˆ์ผ€ํŒ… ๋ฐ ์†Œ์…œ ๋ฏธ๋””์–ด ๋ถ„์„

  • ์ธํ”Œ๋ฃจ์–ธ์„œ ์‹๋ณ„:
    • Content Amplifiers ๋ฐ Interactive Enthusiasts ์‹๋ณ„
    • ์บ ํŽ˜์ธ ์ „ํŒŒ์— ํ™œ์šฉ
  • ์บ ํŽ˜์ธ ํšจ๊ณผ ์ธก์ •:
    • ์ฆํญ ์ง€ํ–ฅ ์‚ฌ์šฉ์ž์˜ ์ „ํŒŒ ์บ์Šค์ผ€์ด๋“œ ๋ถ„์„
    • ์บ ํŽ˜์ธ ํšจ๊ณผ์˜ ๊ตฌ์กฐ์  ์ดํ•ด

๐Ÿ“š ๊ด€๋ จ ๋ฌธํ—Œ ๋ฐ ์ฐธ๊ณ ์ž๋ฃŒ

ํ•ต์‹ฌ ์„ ํ–‰ ์—ฐ๊ตฌ

  • Park et al. (2023) – GABM์˜ ์„ ๊ตฌ์  ์—ฐ๊ตฌ
  • Orlando et al. (2025) – ๊ธฐ์กด GABM ํ”„๋ ˆ์ž„์›Œํฌ
  • Ferraro et al. (2024) – ์ •์ฒด์„ฑ ํŽธํ–ฅ ๋ฌธ์ œ ๊ทœ๋ช…
  • Wang et al. (2025) – ํ–‰๋™ ์ง€ํ–ฅ ํ”„๋กœํ•„ ๋„์ž… (์ถ”์ฒœ ์‹œ์Šคํ…œ ๋„๋ฉ”์ธ)

์ด๋ก ์  ๊ทผ๊ฑฐ

  • Akar & Mardikyan (2018) – ์‚ฌ์šฉ์ž ์ฐธ์—ฌ ์Šคํƒ€์ผ ๋ถ„๋ฅ˜
  • Brandtzรฆg (2010) – ์˜จ๋ผ์ธ ์ปค๋ฎค๋‹ˆํ‹ฐ ์‚ฌ์šฉ์ž ์œ ํ˜•
  • Khobzi & Teimourpour (2015) – ์†Œ์…œ ๋ฏธ๋””์–ด ์ฐธ์—ฌ ํŒจํ„ด
  • Ying et al. (2018) – ์˜จ๋ผ์ธ ์ฐธ์—ฌ ์—ญํ•™
  • Murdock et al. (2024) – ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง์˜ ์‚ฌ์šฉ์ž ์œ ํ˜•

๋„คํŠธ์›Œํฌ ์ด๋ก 

  • Vosoughi et al. (2018) – ์ „ํŒŒ ์—ญํ•™ ๋ฐ ์บ์Šค์ผ€์ด๋“œ
  • Goel et al. (2016) – ์ •๋ณด ์ „ํŒŒ ๊ตฌ์กฐ
  • Jackson & Lรณpez-Pintado (2013) – ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ํ˜„์ƒ

์‹ฌ๋ฆฌ์ธก์ • ์ด๋ก 

  • McCrae & John (1992) – OCEAN ์„ฑ๊ฒฉ ๋ชจ๋ธ
  • Huang et al. (2024) – OCEAN ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ ํŠน์„ฑํ™”

๐Ÿท๏ธ ํƒœ๊ทธ

#AIAgent #arXiv #DailyPaper #2026-01-24 #GABM #GenerativeAgentBasedModeling #BehavioralTraits #SocialMediaSimulation #AgentBasedModeling #LLM #BehavioralProfiling #ContentPropagation


๐Ÿ“ ์ถ”๊ฐ€ ๋ฉ”๋ชจ

ํ•ต์‹ฌ ์ธ์‚ฌ์ดํŠธ

“์—์ด์ „ํŠธ๊ฐ€ ๋ˆ„๊ตฌ์ธ์ง€(Identity)๋งŒ์œผ๋กœ๋Š” ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€(Behavior)๋ฅผ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋‹ค.”

์ด ๋…ผ๋ฌธ์€ GABM์—์„œ์˜ ํ•ต์‹ฌ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค: ์ •์ฒด์„ฑ ํŠน์„ฑ๋งŒ์œผ๋กœ๋Š” ์ด์งˆ์ ์ธ ํ–‰๋™ ํŒจํ„ด์„ ์ƒ์„ฑํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ๋ช…์‹œ์ ์ธ ํ–‰๋™ ํŠน์„ฑ์ด ํ˜„์‹ค์ ์ธ ์†Œ์…œ ๋ฏธ๋””์–ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ํ•„์ˆ˜ ์š”์†Œ์ž…๋‹ˆ๋‹ค.

์—ฐ๊ตฌ์˜ ์‹ค์ฒœ์  ๊ฐ€์ด๋“œ๋ผ์ธ

  1. 2๊ณ„์ธต ํ”„๋กœํ•„: ์ •์ฒด์„ฑ + ํ–‰๋™ ์ด์ค‘ ๊ณ„์ธต ํ•„์ˆ˜
  2. ํ™œ๋™ ๋ฉ”๋ชจ๋ฆฌ: ํ–‰๋™ ์ผ๊ด€์„ฑ ์œ ์ง€๋ฅผ ์œ„ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ•„์ˆ˜
  3. ์ „ํŒŒ ์ฒด์ธ: ๋ฆฌ์…ฐ์–ด ์ฝ˜ํ…์ธ ์˜ ํŒ”๋กœ์›Œ ํ”ผ๋“œ ์ „ํŒŒ ํ•„์ˆ˜
  4. ์‹ค์ฆ์  ๊ฒ€์ฆ: ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ˜„์‹ค ์„ธ๊ณ„ ๊ฐ„์˜ ๊ตฌ์กฐ์  ์ •๋ ฌ ํ•„์ˆ˜

๋ฏธ๋ž˜ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ํ–‰๋™ ํ”„๋กœํ•„์˜ ํ™•์žฅ(์„ธ๋ถ„ํ™”, ๋™์ , ์ƒํ˜ธ์ž‘์šฉ์ )
  • ๋ณต์žกํ•œ ํ–‰๋™ ๋ฐ ์ฝ˜ํ…์ธ  ๋ชจ๋ธ๋ง(๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ, ๊ฐ์ •, ์ปจํ…์ŠคํŠธ)
  • ๋„คํŠธ์›Œํฌ ์—ญํ•™์˜ ์‹ฌ์ธต ๋ถ„์„(๋‹ค๊ณ„์ธต, ์—ญ๋™์ , ๊ณต๋™์ฒด ํ˜•์„ฑ)
  • ์‹ค์ฆ์  ๊ฒ€์ฆ ๊ฐ•ํ™”(๋‹ค์ค‘ ํ”Œ๋žซํผ, ์žฅ๊ธฐ๊ฐ„, ์‹ค์ œ ๋ฐ์ดํ„ฐ ํ†ตํ•ฉ)

๋ฌธ์„œ ์ƒ์„ฑ์ผ: 2026-01-24
arXiv ID: 2601.15114v1

์ž‘์„ฑ์ž

skycave

Follow Me
๋‹ค๋ฅธ ๊ธฐ์‚ฌ
Previous

[AI Paper] From Single to Multi-Agent Reasoning: Advancing GeneGPT for Genomics QA

Next

[AI Paper] ๊ฒŒ์ž„ ์ด๋ก ์  ๊ด€์ ์—์„œ ๋ณธ LLM ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ

๋Œ“๊ธ€ ์—†์Œ! ์ฒซ ๋Œ“๊ธ€์„ ๋‚จ๊ฒจ๋ณด์„ธ์š”.

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ ์‘๋‹ต ์ทจ์†Œ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค

์ตœ์‹ ๊ธ€

  • ๐Ÿ“Š ์ผ์ผ ๋‰ด์Šค ๊ฐ์„ฑ ๋ฆฌํฌํŠธ – 2026-01-28
  • AI ์‹œ์Šคํ…œ์˜ ๋ฌธ๋งฅ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰(Contextual Retrieval) | Anthropic
  • “Think” ํˆด: Claude๊ฐ€ ๋ฉˆ์ถฐ์„œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ | Anthropic
  • Claude Code ๋ชจ๋ฒ” ์‚ฌ๋ก€ \ Anthropic
  • ์šฐ๋ฆฌ๊ฐ€ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ ๋ฐฉ๋ฒ•
Copyright 2026 — skycave's Blog. All rights reserved. Blogsy WordPress Theme