๋ณธ๋ฌธ์œผ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
-
skycave's Blog
skycave's Blog
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
๋‹ซ๊ธฐ

๊ฒ€์ƒ‰

AI

[AI Paper] ๐Ÿ“„ Large Language Model based Multi-Agents: A Survey of Progress and Challenges

By skycave
2026๋…„ 01์›” 25์ผ 7 Min Read
0

๐Ÿ“„ Large Language Model based Multi-Agents: A Survey of Progress and Challenges

๐Ÿ“‹ ๋ฉ”ํƒ€ ์ •๋ณด

ํ•ญ๋ชฉ ๋‚ด์šฉ
์ €์ž Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest, Xiangliang Zhang
์†Œ์† ๊ธฐ๊ด€ University of Notre Dame, King Abdullah University of Science and Technology (KAUST), Southern University of Science and Technology, University of Massachusetts Boston
๋ฐœํ‘œ์ฒ˜ IJCAI 2024 (Thirty-Third International Joint Conference on Artificial Intelligence)
๋ฐœํ‘œ ์—ฐ๋„ 2024
arXiv arXiv:2402.01680
GitHub LLM_MultiAgents_Survey_Papers
ํŽ˜์ด์ง€ pp. 8048-8057

๐ŸŽฏ ํ•œ์ค„ ์š”์•ฝ

LLM ๊ธฐ๋ฐ˜ Multi-Agent ์‹œ์Šคํ…œ์˜ ํ•ต์‹ฌ ๊ตฌ์„ฑ์š”์†Œ(ํ™˜๊ฒฝ ์ธํ„ฐํŽ˜์ด์Šค, ์—์ด์ „ํŠธ ํ”„๋กœํŒŒ์ผ๋ง, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜, ๋Šฅ๋ ฅ ํš๋“)๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , Problem Solving๊ณผ World Simulation ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ์‘์šฉ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ ๋™ํ–ฅ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ์ •๋ฆฌํ•œ ์ตœ์ดˆ์˜ ์ฒด๊ณ„์  ์„œ๋ฒ ์ด ๋…ผ๋ฌธ.


๐Ÿ” ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ

๊ธฐ์กด ์ƒํ™ฉ

  • LLM์ด ๋‹ค์–‘ํ•œ ํƒœ์Šคํฌ์—์„œ ๋†€๋ผ์šด ์„ฑ๊ณผ๋ฅผ ๋‹ฌ์„ฑ
  • LLM์˜ ๋›ฐ์–ด๋‚œ ๊ณ„ํš(Planning) ๋ฐ ์ถ”๋ก (Reasoning) ๋Šฅ๋ ฅ์„ ํ™œ์šฉํ•œ ์ž์œจ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ ํ™œ๋ฐœ
  • ์ดˆ๊ธฐ์—๋Š” ๋‹จ์ผ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •/๊ณ„ํš ์‹œ์Šคํ…œ์ด ์ฃผ๋ฅ˜

๋ฌธ์ œ์ 

  1. ๋‹จ์ผ ์—์ด์ „ํŠธ์˜ ํ•œ๊ณ„
    • ๋ณต์žกํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ํ•„์š”ํ•œ ๋‹ค์–‘ํ•œ ์ „๋ฌธ์„ฑ๊ณผ ๊ด€์  ๋ถ€์กฑ
    • ํ•™์ œ๊ฐ„ ์ง€์‹์ด๋‚˜ ๋‹ค๋ฉด์  ๋ฌธ์ œ ํ•ด๊ฒฐ์— ์ทจ์•ฝ
    • ์ •๋ณด ๊ต์ฐจ ๊ฒ€์ฆ ๋ถˆ๊ฐ€๋กœ hallucination ์œ„ํ—˜
  2. ์ฒด๊ณ„์  ๋ถ„๋ฅ˜ ๋ถ€์žฌ
    • Multi-Agent ์—ฐ๊ตฌ๊ฐ€ ๊ธ‰์ฆํ–ˆ์ง€๋งŒ ํ†ตํ•ฉ์  ํ”„๋ ˆ์ž„์›Œํฌ ๋ถ€์กฑ
    • ์—ฐ๊ตฌ์ž๋“ค์ด ์ „์ฒด ๊ทธ๋ฆผ์„ ํŒŒ์•…ํ•˜๊ธฐ ์–ด๋ ค์›€

์—ฐ๊ตฌ ํ•„์š”์„ฑ

  • Multi-Agent ์‹œ์Šคํ…œ์˜ ํ•ต์‹ฌ ๊ตฌ์„ฑ์š”์†Œ์— ๋Œ€ํ•œ ์ฒด๊ณ„์  ๋ถ„๋ฅ˜
  • ๋‹ค์–‘ํ•œ ์‘์šฉ ๋„๋ฉ”์ธ๋ณ„ ์—ฐ๊ตฌ ๋™ํ–ฅ ์ •๋ฆฌ
  • ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ ์ œ์‹œ

๐Ÿ’ก ํ•ต์‹ฌ ์•„์ด๋””์–ด

Multi-Agent ์‹œ์Šคํ…œ์˜ ์ •์˜

์—ฌ๋Ÿฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ํ˜‘๋ ฅํ•˜์—ฌ ๋‹จ์ผ ์—์ด์ „ํŠธ๋กœ๋Š” ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ค์šด ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ฑฐ๋‚˜, ์‹ค์ œ ์„ธ๊ณ„๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ์‹œ์Šคํ…œ

4๊ฐ€์ง€ ํ•ต์‹ฌ ๋ถ„์„ ์ถ• (Four Key Aspects)

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    LLM-MA System                            โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  1. Agents-Environment Interface (์—์ด์ „ํŠธ-ํ™˜๊ฒฝ ์ธํ„ฐํŽ˜์ด์Šค)  โ”‚
โ”‚  2. Agent Profiling (์—์ด์ „ํŠธ ํ”„๋กœํŒŒ์ผ๋ง)                    โ”‚
โ”‚  3. Agent Communication (์—์ด์ „ํŠธ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜)              โ”‚
โ”‚  4. Agent Capability Acquisition (์—์ด์ „ํŠธ ๋Šฅ๋ ฅ ํš๋“)        โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

ํ•ต์‹ฌ ์—ฐ๊ตฌ ์งˆ๋ฌธ

  1. LLM-MA ์‹œ์Šคํ…œ์ด ์–ด๋–ค ๋„๋ฉ”์ธ๊ณผ ํ™˜๊ฒฝ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š”๊ฐ€?
  2. ์—์ด์ „ํŠธ๋Š” ์–ด๋–ป๊ฒŒ ํ”„๋กœํŒŒ์ผ๋ง๋˜๊ณ , ์–ด๋–ป๊ฒŒ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ํ•˜๋Š”๊ฐ€?
  3. ์—์ด์ „ํŠธ์˜ ๋Šฅ๋ ฅ ์„ฑ์žฅ์— ๊ธฐ์—ฌํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋ฌด์—‡์ธ๊ฐ€?

๐Ÿ—๏ธ ๋ถ„๋ฅ˜ ์ฒด๊ณ„ / ํ”„๋ ˆ์ž„์›Œํฌ

1. Agents-Environment Interface (์—์ด์ „ํŠธ-ํ™˜๊ฒฝ ์ธํ„ฐํŽ˜์ด์Šค)

์—์ด์ „ํŠธ๊ฐ€ ํƒœ์Šคํฌ ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ฐฉ์‹

ํ™˜๊ฒฝ ์œ ํ˜•

์œ ํ˜• ์„ค๋ช… ์˜ˆ์‹œ
Sandbox Environment ๊ฒŒ์ž„ ๊ทœ์น™, ์‹œ๊ฐ„ ์ „ํ™˜ ๋“ฑ ํ”„๋ ˆ์ž„์›Œํฌ ์„ค์ • Werewolf Game, Avalon
Physical Environment ์‹ค์ œ ๋ฌผ๋ฆฌ์  ํ™˜๊ฒฝ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋กœ๋ณดํ‹ฑ์Šค, IoT
Virtual Environment ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ, ์›น ํ™˜๊ฒฝ ChatDev, MetaGPT

ํ™˜๊ฒฝ ํ”ผ๋“œ๋ฐฑ

  • ์—์ด์ „ํŠธ๋Š” ํ™˜๊ฒฝ์œผ๋กœ๋ถ€ํ„ฐ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์•„ ํ˜„์žฌ ์ƒํƒœ ํŒŒ์•…
  • ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•ด ์˜์‚ฌ๊ฒฐ์ • ๋ฐ ํ–‰๋™ ์กฐ์ •

2. Agent Profiling (์—์ด์ „ํŠธ ํ”„๋กœํŒŒ์ผ๋ง)

์—์ด์ „ํŠธ์—๊ฒŒ ํŠน์ • ํ–‰๋™ ๋ฐฉ์‹์„ ๋ถ€์—ฌํ•˜๋Š” ๋ฐฉ๋ฒ•

ํ”„๋กœํŒŒ์ผ๋ง ์ „๋žต (3๊ฐ€์ง€)

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚              Agent Profiling Strategies                โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  Handcrafted โ”‚ LLM-Generatedโ”‚    Data-Driven           โ”‚
โ”‚  (์ˆ˜์ž‘์—…)     โ”‚ (LLM ์ƒ์„ฑ)   โ”‚    (๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜)          โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ์ธ๊ฐ„์ด ์ง์ ‘   โ”‚ LLM์ด ์ž๋™   โ”‚ ์‹ค์ œ ๋ฐ์ดํ„ฐ์—์„œ           โ”‚
โ”‚ ์—ญํ• /ํŽ˜๋ฅด์†Œ๋‚˜ โ”‚ ์—ญํ•  ์ƒ์„ฑ    โ”‚ ํŽ˜๋ฅด์†Œ๋‚˜ ์ถ”์ถœ             โ”‚
โ”‚ ์ •์˜          โ”‚              โ”‚                          โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

ํ”„๋กœํŒŒ์ผ ๊ตฌ์„ฑ์š”์†Œ

  • ์—ญํ•  (Role): Product Manager, Engineer, Tester ๋“ฑ
  • ํŽ˜๋ฅด์†Œ๋‚˜ (Persona): ์„ฑ๊ฒฉ, ์ „๋ฌธ ๋ถ„์•ผ, ํ–‰๋™ ์–‘์‹
  • ๋ชฉํ‘œ (Goal): ์—์ด์ „ํŠธ๊ฐ€ ๋‹ฌ์„ฑํ•ด์•ผ ํ•  ๋ชฉํ‘œ

๋™์  ์—์ด์ „ํŠธ ์ƒ์„ฑ

  • IAAG (Initial Automatic Agent Generation): ์ดˆ๊ธฐ ์ž๋™ ์—์ด์ „ํŠธ ์ƒ์„ฑ
  • DRTAG (Dynamic Real-Time Agent Generation): ์‹ค์‹œ๊ฐ„ ๋™์  ์—์ด์ „ํŠธ ์ƒ์„ฑ
  • ํƒœ์Šคํฌ ์š”๊ตฌ์‚ฌํ•ญ์— ๋”ฐ๋ผ ์ƒˆ๋กœ์šด ์—์ด์ „ํŠธ๋ฅผ on-the-fly๋กœ ์ƒ์„ฑ

3. Agent Communication (์—์ด์ „ํŠธ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜)

์—์ด์ „ํŠธ ๊ฐ„ ๋ฉ”์‹œ์ง€ ๊ตํ™˜ ๋ฐ ํ˜‘๋ ฅ ๋ฐฉ์‹

Communication Structure (ํ†ต์‹  ๊ตฌ์กฐ) – 4๊ฐ€์ง€ ์œ ํ˜•

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                   Communication Structures                       โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚   Centralized   โ”‚   Decentralized โ”‚      Layered/Hierarchical   โ”‚
โ”‚    (์ค‘์•™์ง‘์ค‘ํ˜•)  โ”‚    (๋ถ„์‚ฐํ˜•)      โ”‚         (๊ณ„์ธตํ˜•)             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ์ค‘์•™ ์—์ด์ „ํŠธ๊ฐ€  โ”‚ P2P ๋„คํŠธ์›Œํฌ    โ”‚ ๊ณ„์ธต๋ณ„ ์—ญํ•  ๋ถ„๋ฆฌ             โ”‚
โ”‚ ์ „์ฒด ์กฐ์œจ       โ”‚ ์ง์ ‘ ํ†ต์‹        โ”‚ ์ธ์ ‘ ๊ณ„์ธต๊ณผ ์ƒํ˜ธ์ž‘์šฉ         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

              โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
              โ”‚    Shared Message Pool    โ”‚
              โ”‚     (๊ณต์œ  ๋ฉ”์‹œ์ง€ ํ’€)        โ”‚
              โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
              โ”‚ MetaGPT์—์„œ ์ œ์•ˆ           โ”‚
              โ”‚ ์—์ด์ „ํŠธ๊ฐ€ ๋ฉ”์‹œ์ง€ ๋ฐœํ–‰/๊ตฌ๋…  โ”‚
              โ”‚ ์—ญํ•  ๊ธฐ๋ฐ˜ ๋ฉ”์‹œ์ง€ ํ•„ํ„ฐ๋ง      โ”‚
              โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Communication Paradigm (ํ†ต์‹  ํŒจ๋Ÿฌ๋‹ค์ž„)

ํŒจ๋Ÿฌ๋‹ค์ž„ ์„ค๋ช…
Message Passing ์ž์—ฐ์–ด ๋˜๋Š” ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ ์ „์†ก
Speech Act ๋ฐœํ™”๊ฐ€ ์•ฝ์†, ๋ช…๋ น, ์งˆ์˜ ์—ญํ• 
Blackboard Model ๊ณต์œ  ๋ฉ”๋ชจ๋ฆฌ/์ปจํ…์ŠคํŠธ ์ €์žฅ์†Œ

Network Topology (๋„คํŠธ์›Œํฌ ํ† ํด๋กœ์ง€)

  • Bus, Star, Ring, Tree ๋“ฑ ๋‹ค์–‘ํ•œ ๊ตฌ์„ฑ ๊ฐ€๋Šฅ
  • ์กฐ์ • ์š”๊ตฌ์‚ฌํ•ญ์— ๋”ฐ๋ผ ์ตœ์ ํ™”

4. Agent Capability Acquisition (์—์ด์ „ํŠธ ๋Šฅ๋ ฅ ํš๋“)

์—์ด์ „ํŠธ๊ฐ€ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐฉ๋ฒ•

Feedback Types (ํ”ผ๋“œ๋ฐฑ ์œ ํ˜•)

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    Feedback Sources                      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚   Environment   โ”‚     Human       โ”‚   Other Agents      โ”‚
โ”‚   (ํ™˜๊ฒฝ ํ”ผ๋“œ๋ฐฑ)  โ”‚  (์ธ๊ฐ„ ํ”ผ๋“œ๋ฐฑ)   โ”‚  (์—์ด์ „ํŠธ ํ”ผ๋“œ๋ฐฑ)   โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ์‹ค์ œ/๊ฐ€์ƒ ํ™˜๊ฒฝ  โ”‚ ์‚ฌ์šฉ์ž ํ‰๊ฐ€     โ”‚ ๋™๋ฃŒ ์—์ด์ „ํŠธ        โ”‚
โ”‚ ์—์„œ์˜ ๊ฒฐ๊ณผ     โ”‚ ๋ฐ ์ˆ˜์ •         โ”‚ ๊ฒ€์ฆ ๋ฐ ๋น„ํ‰         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Learning Strategies (ํ•™์Šต ์ „๋žต)

  1. Memory-based Learning
    • Short-term Memory: ํ–‰๋™๊ณผ ๊ด€์ฐฐ์˜ ๊ถค์ 
    • Long-term Memory: ์ถ•์ ๋œ ๊ฒฝํ—˜
    • Reflection: ์ž๊ธฐ ์„ฑ์ฐฐ์„ ํ†ตํ•œ ๊ฐœ์„ 
  2. Self-Reflection (์ž๊ธฐ ์„ฑ์ฐฐ)
    • Reflexion: ํƒœ์Šคํฌ ์™„๋ฃŒ/์‹คํŒจ ํ›„ ์–ธ์–ด์  ๋ถ„์„ ์ƒ์„ฑ
    • ์—ํ”ผ์†Œ๋”• ๋ฉ”๋ชจ๋ฆฌ ๋ฒ„ํผ์— ์„ฑ์ฐฐ ์ €์žฅ
    • “Verbal Reinforcement Learning”
  3. Tool-based Feedback
    • CRITIC: ๋„๊ตฌ ๊ธฐ๋ฐ˜ ํ”ผ๋“œ๋ฐฑ์œผ๋กœ ์ถœ๋ ฅ ๊ฒ€์ฆ/์ˆ˜์ •
    • STE: Trial-and-error ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ๋„๊ตฌ ํ•™์Šต ๊ฐ•ํ™”

5. ์‘์šฉ ๋ถ„์•ผ ๋ถ„๋ฅ˜

Problem Solving (๋ฌธ์ œ ํ•ด๊ฒฐ)

๋ถ„์•ผ ์„ค๋ช… ๋Œ€ํ‘œ ์‹œ์Šคํ…œ
Software Development ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ์ž๋™ํ™” ChatDev, MetaGPT
Scientific Research ๊ณผํ•™ ์—ฐ๊ตฌ ๊ฐ€์†ํ™” ChemCrow
Mathematical Reasoning ์ˆ˜ํ•™์  ์ถ”๋ก  –
Code Generation ์ฝ”๋“œ ์ƒ์„ฑ AutoGen

World Simulation (์„ธ๊ณ„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜)

๋ถ„์•ผ ์„ค๋ช… ์˜ˆ์‹œ
Social Simulation ์‚ฌํšŒ์  ํ–‰๋™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ Generative Agents
Game Simulation ๊ฒŒ์ž„ ํ™˜๊ฒฝ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ Werewolf, Avalon
Economy Simulation ๊ฒฝ์ œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ –
Psychology Simulation ์‹ฌ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ –
Policy Making ์ •์ฑ… ๊ฒฐ์ • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ –
Disease Propagation ์งˆ๋ณ‘ ์ „ํŒŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ –

๐Ÿ“Š ์ฃผ์š” ์—ฐ๊ตฌ๋“ค ๋น„๊ต

๋Œ€ํ‘œ Multi-Agent ํ”„๋ ˆ์ž„์›Œํฌ ๋น„๊ต

ํ”„๋ ˆ์ž„์›Œํฌ ๊ฐœ๋ฐœ์‚ฌ ํŠน์ง• GitHub Stars ์ฃผ์š” ์šฉ๋„
AutoGen Microsoft ์œ ์—ฐํ•œ ์›Œํฌํ”Œ๋กœ์šฐ, ๊ทธ๋ฃน ์ฑ„ํŒ…, ์ค‘์ฒฉ ๋Œ€ํ™” ์ง€์› ~53K+ ๋ฒ”์šฉ (์ˆ˜ํ•™, ์ฝ”๋”ฉ, QA ๋“ฑ)
MetaGPT – SOP ๊ธฐ๋ฐ˜, ์†Œํ”„ํŠธ์›จ์–ด ํšŒ์‚ฌ ๊ตฌ์กฐ ๋ชจ๋ฐฉ ~40K+ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ
ChatDev OpenBMB Waterfall ๋ชจ๋ธ, ์—ญํ•  ๊ธฐ๋ฐ˜ ํ˜‘์—… – ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ
CAMEL – Role-playing ๊ธฐ๋ฐ˜ ์ดˆ๊ธฐ ํ”„๋ ˆ์ž„์›Œํฌ – ์—ฐ๊ตฌ/์‹คํ—˜

์„ฑ๋Šฅ ๋น„๊ต

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚             Performance Comparison (Code Generation)         โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  Framework   โ”‚  ํŠน์ง•                                         โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  ChatDev     โ”‚ ํ’ˆ์งˆ ๋ฉ”ํŠธ๋ฆญ์—์„œ MetaGPT ๋Œ€๋น„ ์šฐ์ˆ˜              โ”‚
โ”‚              โ”‚ ์ž์—ฐ์–ด + ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด ํ˜‘๋ ฅ์  ํ†ต์‹             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  MetaGPT     โ”‚ SOP๋กœ ์›Œํฌํ”Œ๋กœ์šฐ ์ฒด๊ณ„ํ™”, ์—๋Ÿฌ ๊ฐ์†Œ             โ”‚
โ”‚              โ”‚ ๋†’์€ ํ†ต์‹  ๋น„์šฉ (~$10/HumanEval task)          โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  AutoGen     โ”‚ ๊ฐ€์žฅ ์œ ์—ฐํ•œ ๋Œ€ํ™” ํŒจํ„ด                          โ”‚
โ”‚              โ”‚ SOP ์™ธ ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค ์ง€์›                    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ GPT-Engineer โ”‚ ๋‹จ์ผ ์—์ด์ „ํŠธ, Multi-Agent ๋Œ€๋น„ ์„ฑ๋Šฅ ์ €์กฐ      โ”‚
โ”‚ (Single)     โ”‚ ๋ณต์žกํ•œ ํƒœ์Šคํฌ์—์„œ ํ•œ๊ณ„                         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

ํ†ต์‹  ๊ตฌ์กฐ๋ณ„ ๋Œ€ํ‘œ ์—ฐ๊ตฌ

ํ†ต์‹  ๊ตฌ์กฐ ๋Œ€ํ‘œ ์—ฐ๊ตฌ ํŠน์ง•
Centralized AutoGen Supervisor ๋ช…ํ™•ํ•œ ์ œ์–ด, ๋ณ‘๋ชฉ ๊ฐ€๋Šฅ์„ฑ
Decentralized CAMEL ๋†’์€ ์ ์‘์„ฑ, ์กฐ์ • ๋ณต์žก์„ฑ
Shared Pool MetaGPT ํšจ์œจ์  ๋ฉ”์‹œ์ง€ ๊ด€๋ฆฌ
Layered DyLAN ๋™์  ์ƒํ˜ธ์ž‘์šฉ, ์กฐ๊ธฐ ์ข…๋ฃŒ ๋ฉ”์ปค๋‹ˆ์ฆ˜

๐Ÿ’ช Multi-Agent์˜ ์žฅ์ 

Single Agent ๋Œ€๋น„ ํ•ต์‹ฌ ์žฅ์ 

1. ํ–ฅ์ƒ๋œ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ

  • ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ๊ด€๋ฆฌ ๊ฐ€๋Šฅํ•œ ํ•˜์œ„ ํƒœ์Šคํฌ๋กœ ๋ถ„ํ•ด
  • ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ์ „๋ฌธ ๋ถ„์•ผ์— ์ง‘์ค‘
  • ํ•™์ œ๊ฐ„ ์ง€์‹ ๊ฒฐํ•ฉ ๊ฐ€๋Šฅ

2. ์ •ํ™•์„ฑ ๋ฐ ์‹ ๋ขฐ์„ฑ ํ–ฅ์ƒ

  • ๊ต์ฐจ ๊ฒ€์ฆ: ์—ฌ๋Ÿฌ ์—์ด์ „ํŠธ๊ฐ€ ์ •๋ณด ์ƒํ˜ธ ๊ฒ€์ฆ
  • Hallucination ๊ฐ์†Œ: ํ† ๋ก , ๊ฒ€ํ† , ๊ฒ€์ฆ์„ ํ†ตํ•œ ์˜ค๋ฅ˜ ์ˆ˜์ •
  • ๋‹จ์ผ ์—์ด์ „ํŠธ ๋Œ€๋น„ ๋” ์ •ํ™•ํ•˜๊ณ  ๊ฒฌ๊ณ ํ•œ ์†”๋ฃจ์…˜

3. ํ™•์žฅ์„ฑ (Scalability)

  • ์‹œ์Šคํ…œ ์ „์ฒด ์žฌ์ž‘์—… ์—†์ด ์—์ด์ „ํŠธ ์ถ”๊ฐ€ ๊ฐ€๋Šฅ
  • ๋น„์ฆˆ๋‹ˆ์Šค ์š”๊ตฌ ๋ณ€ํ™”์— ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์‘
  • ์›Œํฌ๋กœ๋“œ ์ฆ๊ฐ€์‹œ ์ƒˆ๋กœ์šด ์—์ด์ „ํŠธ ํ†ตํ•ฉ ์šฉ์ด

4. ํšจ์œจ์„ฑ (Efficiency)

  • ์›Œํฌ๋กœ๋“œ ๋ถ„์‚ฐ์œผ๋กœ ๋” ๋น ๋ฅธ ์‹คํ–‰
  • ๋ณ‘๋ชฉํ˜„์ƒ ๊ฐ์†Œ
  • ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ

5. ํšŒ๋ณตํƒ„๋ ฅ์„ฑ (Resilience)

  • ํ•œ ์ปดํฌ๋„ŒํŠธ ์‹คํŒจ ์‹œ์—๋„ ์‹œ์Šคํ…œ ์œ ์ง€
  • ํ—ฌ์Šค์ผ€์–ด, ๋ฌผ๋ฅ˜ ๋“ฑ ์ƒ์‹œ ๊ฐ€๋™ ํ™˜๊ฒฝ์— ์ ํ•ฉ

6. ์ธ๊ฐ„ ํ–‰๋™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜

  • ์ „๋žต์  ์ถ”๋ก  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ Multi-Agent๊ฐ€ ์šฐ์ˆ˜ (88% vs 50% ์ •ํ™•๋„)
  • ์ •์ฑ… ๊ฒฐ์ •์ž๋ฅผ ์œ„ํ•œ ์˜ˆ๋น„ ํƒ์ƒ‰์— ํ™œ์šฉ ๊ฐ€๋Šฅ

์ •๋Ÿ‰์  ๋น„๊ต

์ธก๋ฉด Single Agent Multi-Agent
์ธ๊ฐ„ ์ „๋žต์  ์ถ”๋ก  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 50% ์ •ํ™•๋„ 88% ์ •ํ™•๋„
๋ณต์žกํ•œ ํƒœ์Šคํฌ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ ์ €ํ•˜ ํšจ๊ณผ์  ๋ถ„์—…
์ •๋ณด ๊ฒ€์ฆ ๋ถˆ๊ฐ€ ๊ต์ฐจ ๊ฒ€์ฆ ๊ฐ€๋Šฅ

โš ๏ธ ํ˜„์žฌ ํ•œ๊ณ„์  ๋ฐ ๋ฏธํ•ด๊ฒฐ ๊ณผ์ œ

1. Hallucination (ํ™˜๊ฐ) ๋ฌธ์ œ

  • Cascading Hallucinations: ํ•œ ์—์ด์ „ํŠธ์˜ ์˜ค๋ฅ˜๊ฐ€ ์—ฐ์‡„์ ์œผ๋กœ ํ™•๋Œ€
  • Communication Hallucinations: ๋ถ€์ •ํ™•ํ•œ ์‚ฌ์‹ค, ์˜คํ•ด์„, ์˜ค๋„ํ•˜๋Š” ์ถ”๋ก  ํฌํ•จ ๋ฉ”์‹œ์ง€ ์ƒ์„ฑ
  • LLM ์ž์ฒด์˜ Factuality/Faithfulness Hallucination์ด Multi-Agent ํ™˜๊ฒฝ์—์„œ ์ฆํญ

2. ํ™•์žฅ์„ฑ ๋ฐ ํšจ์œจ์„ฑ ๋ฌธ์ œ

  • ์ถ”๋ก  ์†๋„: LLM์˜ autoregressive ํŠน์„ฑ์œผ๋กœ ๋А๋ฆฐ ์ถ”๋ก 
  • ๋ฐ˜๋ณต ์ฟผ๋ฆฌ: ๋ฉ”๋ชจ๋ฆฌ ์ถ”์ถœ, ๊ณ„ํš ์ˆ˜๋ฆฝ ๋“ฑ ๊ฐ ํ–‰๋™๋งˆ๋‹ค ์—ฌ๋Ÿฌ ๋ฒˆ LLM ์ฟผ๋ฆฌ ํ•„์š”
  • ํ†ต์‹  ๋น„์šฉ: MetaGPT, ChatDev ๋“ฑ ๋Œ€๊ทœ๋ชจ ์—์ด์ „ํŠธ ๊ทธ๋ฃน์—์„œ ๋†’์€ ๋น„์šฉ (~$10/task)

3. ์กฐ์ • ๋ฐ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜

  • Agent Orchestration: ๋‹ค์–‘ํ•œ ์—์ด์ „ํŠธ ๊ด€๋ฆฌ์˜ ๋ณต์žก์„ฑ
  • ๋ถ„์‚ฐํ˜• ํŒจ๋Ÿฌ๋‹ค์ž„์—์„œ ์—์ด์ „ํŠธ ์ˆ˜ ์ฆ๊ฐ€ ์‹œ ํšจ์œจ์„ฑ ์ €ํ•˜
  • ๋ช…ํ™•ํ•œ ๊ณ„ํš ์—†๋Š” ์ž์œ ๋กœ์šด ํ†ต์‹  ์‹œ ํ˜ผ๋ž€ ๋ฐœ์ƒ

4. ํ‰๊ฐ€ ๋ฐ ๋ฒค์น˜๋งˆํฌ ๋ถ€์žฌ

  • ํ‘œ์ค€ํ™”๋œ ๋ฒค์น˜๋งˆํฌ ๋ถ€์กฑ: ๋™์ผ ์ข…๋ฅ˜์˜ LLM-MAS ๋น„๊ต ๋ถˆ๊ฐ€
  • ๊ทธ๋ฃน ํ–‰๋™ ๊ฐ๊ด€์  ๋ฉ”ํŠธ๋ฆญ ๋ถ€์žฌ: ์ง‘๋‹จ ์ˆ˜์ค€์˜ ์ƒ์„ธํ•œ ํ‰๊ฐ€ ์ง€ํ‘œ ๋ฏธํ™•๋ฆฝ
  • ์ •์  ์ธ๊ฐ„ ์ฃผ์„ ๊ธฐ๋ฐ˜ ํ‰๊ฐ€์˜ ํ™•์žฅ์„ฑ ํ•œ๊ณ„

5. ์กฐ์ง ์„ค๊ณ„ ๋ฌธ์ œ

  • ๊ธฐ๋ณธ ๋ชจ๋ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ๋งŒ์œผ๋กœ๋Š” ๋ชจ๋“  ์ด์Šˆ ํ•ด๊ฒฐ ๋ถˆ๊ฐ€
  • ์กฐ์ง ๊ตฌ์กฐ ๊ฒฐํ•จ: ์ •๊ตํ•œ ๊ฐœ์ธ๋“ค์˜ ์กฐ์ง๋„ ๊ตฌ์กฐ ๊ฒฐํ•จ ์‹œ ์‹คํŒจ ๊ฐ€๋Šฅ
  • ๊ฐœ๋ณ„ ์—์ด์ „ํŠธ ํ•œ๊ณ„๋ณด๋‹ค ์กฐ์ง ์„ค๊ณ„์™€ ์กฐ์ •์˜ ๋ฌธ์ œ

6. ์•ˆ์ „์„ฑ ๋ฌธ์ œ

  • Multi-Agent ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ Emergent Risks ๋ฐœ์ƒ ๊ฐ€๋Šฅ
  • ์ ๋Œ€์  ์ž…๋ ฅ์— ๋Œ€ํ•œ ๊ฒฌ๊ณ ์„ฑ ๋ถ€์กฑ
  • ํŽธํ–ฅ ์™„ํ™” ๋ฐ ์ •์ฑ… ์ค€์ˆ˜ ํ…Œ์ŠคํŠธ ๋ถ€์กฑ

7. ๋””๋ฒ„๊น… ์–ด๋ ค์›€

  • ์ถœ๋ ฅ ์‹คํŒจ ์‹œ ์–ด๋–ค ์—์ด์ „ํŠธ์˜ ๋ฌธ์ œ์ธ์ง€ ๋ถˆ๋ช…ํ™•
  • 3-์—์ด์ „ํŠธ ์ฒด์ธ์ด ๋น„์šฉ๊ณผ ์ง€์—ฐ 3๋ฐฐ ์ฆ๊ฐ€ ๊ฐ€๋Šฅ

๐Ÿ”ฎ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

1. ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋ก  ๊ฐœ์„ 

  • Agent-as-a-Judge: LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋ฅผ ํ‰๊ฐ€์ž๋กœ ํ™œ์šฉ
  • ๋” ํ˜„์‹ค์ ์ด๊ณ  ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ํ‰๊ฐ€ ์ ‘๊ทผ๋ฒ• ๊ฐœ๋ฐœ
  • ์ž๋™ํ™”๋œ ํ‰๊ฐ€ ์‹œ์Šคํ…œ ๊ตฌ์ถ•

2. ์•ˆ์ „์„ฑ ๋ฒค์น˜๋งˆํฌ ๊ฐœ๋ฐœ

  • Multi-Agent ์‹œ๋‚˜๋ฆฌ์˜ค ํŠนํ™” ์•ˆ์ „์„ฑ ํ…Œ์ŠคํŠธ
  • ์‹ค์ œ ์‹œ๋‚˜๋ฆฌ์˜ค ์‹œ๋ฎฌ๋ ˆ์ด์…˜
  • AgentHarm ๋“ฑ ์ดˆ๊ธฐ ๋…ธ๋ ฅ ํ™•์žฅ

3. ํšจ์œจ์„ฑ ์ตœ์ ํ™”

  • ์ถ”๋ก  ์†๋„ ๊ฐœ์„ 
  • ํ†ต์‹  ๋น„์šฉ ์ ˆ๊ฐ
  • ์กฐ๊ธฐ ์ข…๋ฃŒ ๋ฉ”์ปค๋‹ˆ์ฆ˜ (DyLAN ๋“ฑ)

4. ๊ธฐ์—… ํŠนํ™” ๊ณผ์ œ ํ•ด๊ฒฐ

  • ์—ญํ•  ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ
  • ์‹ ๋ขฐ์„ฑ ๋ณด์žฅ
  • ๋™์ /์žฅ๊ธฐ ์ƒํ˜ธ์ž‘์šฉ
  • ๊ทœ์ • ์ค€์ˆ˜

๐Ÿ”— ๊ด€๋ จ ํ•ต์‹ฌ ๋…ผ๋ฌธ

Multi-Agent ํ”„๋ ˆ์ž„์›Œํฌ

  • AutoGen: Wu et al. – Microsoft์˜ Multi-Agent ๋Œ€ํ™” ํ”„๋ ˆ์ž„์›Œํฌ
  • MetaGPT: Hong et al. – SOP ๊ธฐ๋ฐ˜ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋ ˆ์ž„์›Œํฌ
  • ChatDev: Qian et al. – ๊ฐ€์ƒ ์†Œํ”„ํŠธ์›จ์–ด ํšŒ์‚ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜
  • CAMEL: Li et al. – Role-playing ๊ธฐ๋ฐ˜ ์ดˆ๊ธฐ ํ”„๋ ˆ์ž„์›Œํฌ

World Simulation

  • Generative Agents: Park et al. – 25๋ช… ์—์ด์ „ํŠธ์˜ ์‚ฌํšŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜

Agent Architecture

  • ReAct: Yao et al. – Reasoning + Acting ํ†ตํ•ฉ
  • Reflexion: Shinn et al. – ์ž๊ธฐ ์„ฑ์ฐฐ ๊ธฐ๋ฐ˜ ํ•™์Šต

Communication

  • DyLAN: Liu et al. – Dynamic LLM-Agent Network

๊ด€๋ จ ์„œ๋ฒ ์ด

  • A Survey on Large Language Model based Autonomous Agents (2023)
  • A survey on LLM-based multi-agent systems: workflow, infrastructure, and challenges

๐Ÿ’ป ์‹ค๋ฌด ์ ์šฉ ํฌ์ธํŠธ

์‹œ์Šคํ…œ ์„ค๊ณ„ ์‹œ ๊ณ ๋ ค์‚ฌํ•ญ

1. ํ”„๋ ˆ์ž„์›Œํฌ ์„ ํƒ ๊ฐ€์ด๋“œ

์‚ฌ์šฉ ์‚ฌ๋ก€ ๊ถŒ์žฅ ํ”„๋ ˆ์ž„์›Œํฌ
๊ธฐ์—… ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ AutoGen, LangGraph
์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ MetaGPT, ChatDev
์—ฐ๊ตฌ/์‹คํ—˜ CAMEL
์œ ์—ฐํ•œ ๋Œ€ํ™” AutoGen

2. ํ†ต์‹  ๊ตฌ์กฐ ์„ค๊ณ„

  • ์ค‘์•™์ง‘์ค‘ํ˜•: ๋ช…ํ™•ํ•œ ์ œ์–ด ํ•„์š” ์‹œ (๋ณ‘๋ชฉ ์ฃผ์˜)
  • ๋ถ„์‚ฐํ˜•: ๋†’์€ ์ ์‘์„ฑ ํ•„์š” ์‹œ (์กฐ์ • ๋ณต์žก์„ฑ ์ฃผ์˜)
  • ๊ณต์œ  ๋ฉ”์‹œ์ง€ ํ’€: ํšจ์œจ์  ๋ฉ”์‹œ์ง€ ๊ด€๋ฆฌ ํ•„์š” ์‹œ

3. ์—์ด์ „ํŠธ ํ”„๋กœํŒŒ์ผ๋ง

  • ์—ญํ• ๊ณผ ์ฑ…์ž„ ๋ช…ํ™•ํžˆ ์ •์˜
  • ์ ์ ˆํ•œ ์ˆ˜์˜ ์—์ด์ „ํŠธ ์œ ์ง€ (๊ณผ๋„ํ•œ ์—์ด์ „ํŠธ๋Š” ๋น„์šฉ ์ฆ๊ฐ€)
  • ๋™์  ์—์ด์ „ํŠธ ์ƒ์„ฑ ๊ณ ๋ ค

4. ๋น„์šฉ ์ตœ์ ํ™”

  • ์ง๋ ฌ ๋ฉ”์‹œ์ง€ ์ตœ์†Œํ™”
  • ์กฐ๊ธฐ ์ข…๋ฃŒ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋„์ž…
  • ์—์ด์ „ํŠธ ์ˆ˜์™€ ํ†ต์‹  ๋ณต์žก๋„ ๊ท ํ˜•

5. ์˜ค๋ฅ˜ ์ฒ˜๋ฆฌ

  • ๊ต์ฐจ ๊ฒ€์ฆ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ตฌํ˜„
  • Hallucination ๊ฐ์ง€ ๋กœ์ง ์ถ”๊ฐ€
  • ํด๋ฐฑ ์ „๋žต ์ˆ˜๋ฆฝ

6. ํ‰๊ฐ€ ์ „๋žต

  • SWE-bench, WebArena, AgentBench ๋“ฑ ํ‘œ์ค€ ๋ฒค์น˜๋งˆํฌ ํ™œ์šฉ
  • TheAgentCompany ๊ฐ™์€ ํ˜„์‹ค์  ํƒœ์Šคํฌ ๋ฒค์น˜๋งˆํฌ ๊ณ ๋ ค
  • ์ž์ฒด ํ‰๊ฐ€ ๋ฉ”ํŠธ๋ฆญ ์ •์˜

์‹ค๋ฌด ์ฒดํฌ๋ฆฌ์ŠคํŠธ

โ–ก ๋ฌธ์ œ๊ฐ€ Multi-Agent๊ฐ€ ํ•„์š”ํ•œ ๋ณต์žก์„ฑ์ธ๊ฐ€?
โ–ก ์ ์ ˆํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ–ˆ๋Š”๊ฐ€?
โ–ก ์—์ด์ „ํŠธ ์—ญํ• ์ด ๋ช…ํ™•ํžˆ ์ •์˜๋˜์—ˆ๋Š”๊ฐ€?
โ–ก ํ†ต์‹  ๊ตฌ์กฐ๊ฐ€ ์š”๊ตฌ์‚ฌํ•ญ์— ๋งž๋Š”๊ฐ€?
โ–ก ๋น„์šฉ ์ถ”์ •์„ ์™„๋ฃŒํ–ˆ๋Š”๊ฐ€?
โ–ก ์˜ค๋ฅ˜ ์ฒ˜๋ฆฌ ์ „๋žต์ด ์žˆ๋Š”๊ฐ€?
โ–ก ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์ด ์ •์˜๋˜์—ˆ๋Š”๊ฐ€?
โ–ก ํ™•์žฅ์„ฑ์„ ๊ณ ๋ คํ–ˆ๋Š”๊ฐ€?

๐Ÿท๏ธ Tags

#AIAgent #MultiAgent #LLM #Survey #IJCAI2024 #AutoGen #MetaGPT #ChatDev #CAMEL #AgentCommunication #AgentProfiling #WorldSimulation #ProblemSolving #SoftwareDevelopment #AI์‹œ์Šคํ…œ์„ค๊ณ„ #๋ฉ€ํ‹ฐ์—์ด์ „ํŠธ #๋Œ€๊ทœ๋ชจ์–ธ์–ด๋ชจ๋ธ


๐Ÿ“š ์ฐธ๊ณ  ์ž๋ฃŒ

  • arXiv ๋…ผ๋ฌธ
  • IJCAI 2024 Proceedings
  • GitHub Repository
  • Semantic Scholar

Last Updated: 2024
Note: ์ด ๋…ธํŠธ๋Š” ์„œ๋ฒ ์ด ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋‚ด์šฉ์„ ํ•™์Šต ๋ชฉ์ ์œผ๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์ž‘์„ฑ์ž

skycave

Follow Me
๋‹ค๋ฅธ ๊ธฐ์‚ฌ
Previous

[AI Paper] Improving Methodologies for Agentic Evaluations Across Domains

Next

[AI Paper] LLMOrbit: A Circular Taxonomy of Large Language Models

๋Œ“๊ธ€ ์—†์Œ! ์ฒซ ๋Œ“๊ธ€์„ ๋‚จ๊ฒจ๋ณด์„ธ์š”.

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ ์‘๋‹ต ์ทจ์†Œ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค

์ตœ์‹ ๊ธ€

  • ๐Ÿ“Š ์ผ์ผ ๋‰ด์Šค ๊ฐ์„ฑ ๋ฆฌํฌํŠธ – 2026-01-28
  • AI ์‹œ์Šคํ…œ์˜ ๋ฌธ๋งฅ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰(Contextual Retrieval) | Anthropic
  • “Think” ํˆด: Claude๊ฐ€ ๋ฉˆ์ถฐ์„œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ | Anthropic
  • Claude Code ๋ชจ๋ฒ” ์‚ฌ๋ก€ \ Anthropic
  • ์šฐ๋ฆฌ๊ฐ€ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ ๋ฐฉ๋ฒ•
Copyright 2026 — skycave's Blog. All rights reserved. Blogsy WordPress Theme