๋ณธ๋ฌธ์œผ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
-
skycave's Blog
skycave's Blog
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
๋‹ซ๊ธฐ

๊ฒ€์ƒ‰

AI

[AI Paper] ๐Ÿ“„ Large Language Models as Tool Makers

By skycave
2026๋…„ 01์›” 25์ผ 5 Min Read
0

๐Ÿ“„ Large Language Models as Tool Makers

๐Ÿ“‹ ๋ฉ”ํƒ€ ์ •๋ณด

ํ•ญ๋ชฉ ๋‚ด์šฉ
๋…ผ๋ฌธ ์ œ๋ชฉ Large Language Models as Tool Makers
์ €์ž Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, Denny Zhou
์†Œ์† Google DeepMind, Princeton University, Stanford University
๋ฐœํ‘œ ICLR 2024 (Poster)
arXiv 2305.17126
OpenReview qV83K9d5WB
GitHub ctlllll/LLM-ToolMaker

๐ŸŽฏ ํ•œ์ค„ ์š”์•ฝ

LLM์ด ์Šค์Šค๋กœ ์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋„๊ตฌ(Python ํ•จ์ˆ˜)๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ์ด ํ™œ์šฉํ•˜๋„๋ก ๋ถ„์—…ํ™”ํ•˜์—ฌ ์„ฑ๋Šฅ์€ ์œ ์ง€ํ•˜๋ฉด์„œ ์ถ”๋ก  ๋น„์šฉ์„ ๋Œ€ํญ ์ ˆ๊ฐํ•˜๋Š” LATM(LLMs As Tool Makers) ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์•ˆ


๐Ÿ” ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ

๊ธฐ์กด ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„

  • ๊ธฐ์กด Tool-use ์—ฐ๊ตฌ: Toolformer, ReAct ๋“ฑ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ LLM์ด ์™ธ๋ถ€ ๋„๊ตฌ๋ฅผ “์‚ฌ์šฉ”ํ•˜๋Š” ๋ฐ ์ดˆ์ 
  • ๋„๊ตฌ ์˜์กด์„ฑ ๋ฌธ์ œ: ์‚ฌ์ „์— ์ •์˜๋œ ๋„๊ตฌ(๊ณ„์‚ฐ๊ธฐ, ๊ฒ€์ƒ‰ ์—”์ง„ ๋“ฑ)์˜ ๊ฐ€์šฉ์„ฑ์— ์˜์กด
  • ๋น„์šฉ ๋ฌธ์ œ: GPT-4์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ๋ชจ๋ธ์„ ๋ชจ๋“  ์ถ”๋ก ์— ์‚ฌ์šฉํ•˜๋ฉด ๋น„์šฉ์ด ๊ธ‰์ฆ

ํ•ต์‹ฌ ์งˆ๋ฌธ

“LLM์ด ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, ์Šค์Šค๋กœ ๋„๊ตฌ๋ฅผ ๋งŒ๋“ค ์ˆ˜๋„ ์žˆ์ง€ ์•Š์„๊นŒ?”

์ธ๊ฐ„ ์‚ฌํšŒ์™€์˜ ๋น„์œ 

  • ์ธ๊ฐ„ ์‚ฌํšŒ์—์„œ ๋ณต์žกํ•œ ๋ฌธ์ œ๋Š” ๋ถ„์—…์„ ํ†ตํ•ด ํ•ด๊ฒฐ
  • ๋„๊ตฌ ์ œ์ž‘์ž(์ „๋ฌธ๊ฐ€)๊ฐ€ ๋„๊ตฌ๋ฅผ ๋งŒ๋“ค๋ฉด, ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž๊ฐ€ ์ด๋ฅผ ํ™œ์šฉ
  • ์ด๋Ÿฌํ•œ ๋ถ„์—… ๊ตฌ์กฐ๋ฅผ LLM ์‹œ์Šคํ…œ์— ์ ์šฉ

๐Ÿ’ก ํ•ต์‹ฌ ์•„์ด๋””์–ด

Tool Making vs Tool Using

๊ตฌ๋ถ„ Tool Making Tool Using
์—ญํ•  ๋„๊ตฌ(Python ํ•จ์ˆ˜) ์ƒ์„ฑ ์ƒ์„ฑ๋œ ๋„๊ตฌ ํ™œ์šฉํ•˜์—ฌ ๋ฌธ์ œ ํ•ด๊ฒฐ
๋ชจ๋ธ ์š”๊ตฌ์‚ฌํ•ญ ๊ณ ์„ฑ๋Šฅ ๋ชจ๋ธ (GPT-4) ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ (GPT-3.5)
์‹คํ–‰ ๋นˆ๋„ ํƒœ์Šคํฌ ์œ ํ˜•๋‹น 1ํšŒ ์ธ์Šคํ„ด์Šค๋งˆ๋‹ค ๋ฐ˜๋ณต
๋น„์šฉ ๋†’์Œ (์ผํšŒ์„ฑ) ๋‚ฎ์Œ (๋ฐ˜๋ณต์ )

Maker-User ๋ถ„๋ฆฌ ์•„ํ‚คํ…์ฒ˜์˜ ์ด์ 

  1. ๋น„์šฉ ์ตœ์ ํ™”
    • ๊ณ ๋น„์šฉ ๋ชจ๋ธ(GPT-4)์€ ๋„๊ตฌ ์ƒ์„ฑ์—๋งŒ ์‚ฌ์šฉ
    • ์ €๋น„์šฉ ๋ชจ๋ธ(GPT-3.5)์ด ์‹ค์ œ ๋ฌธ์ œ ํ•ด๊ฒฐ ์ˆ˜ํ–‰
    • ๋„๊ตฌ ์ƒ์„ฑ ๋น„์šฉ์ด ๋‹ค์ˆ˜์˜ ์‚ฌ์šฉ ์ธ์Šคํ„ด์Šค์— ๋ถ„์‚ฐ
  2. Functional Caching
    • ๊ธฐ์กด ์บ์‹ฑ: ์ž์—ฐ์–ด ์‘๋‹ต ์ €์žฅ
    • LATM ์บ์‹ฑ: ๊ธฐ๋Šฅ(ํ•จ์ˆ˜) ์ž์ฒด๋ฅผ ์ €์žฅ
    • ์œ ์‚ฌํ•œ ์š”์ฒญ์— ๋Œ€ํ•ด ์บ์‹œ๋œ ๋„๊ตฌ์˜ API ํ˜ธ์ถœ๋กœ ํ•ด๊ฒฐ
  3. ํ™•์žฅ์„ฑ
    • ์ƒˆ๋กœ์šด ๋ฌธ์ œ ์œ ํ˜• ๋“ฑ์žฅ ์‹œ ๋„๊ตฌ ์ž๋™ ์ƒ์„ฑ
    • ์ƒ์„ฑ๋œ ๋„๊ตฌ๋Š” ์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅ

๐Ÿ—๏ธ ์•„ํ‚คํ…์ฒ˜ / ๋ฐฉ๋ฒ•๋ก 

์ „์ฒด ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์กฐ

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    LATM Framework                            โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                              โ”‚
โ”‚   [New Task Instance] โ”€โ”€โ–ถ [Dispatcher]                      โ”‚
โ”‚                              โ”‚                               โ”‚
โ”‚              โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”              โ”‚
โ”‚              โ–ผ               โ–ผ               โ–ผ              โ”‚
โ”‚         ๊ธฐ์กด ๋„๊ตฌ ์žˆ์Œ    ์ƒˆ ๋„๊ตฌ ํ•„์š”    ์ง์ ‘ ํ•ด๊ฒฐ          โ”‚
โ”‚              โ”‚               โ”‚               โ”‚              โ”‚
โ”‚              โ–ผ               โ–ผ               โ–ผ              โ”‚
โ”‚         Tool User       Tool Maker      Direct Solve        โ”‚
โ”‚        (GPT-3.5)        (GPT-4)         (GPT-3.5)          โ”‚
โ”‚              โ”‚               โ”‚               โ”‚              โ”‚
โ”‚              โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜              โ”‚
โ”‚                              โ”‚                               โ”‚
โ”‚                              โ–ผ                               โ”‚
โ”‚                        [Solution]                            โ”‚
โ”‚                                                              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Tool Making ๋‹จ๊ณ„ (3๋‹จ๊ณ„)

1๋‹จ๊ณ„: Tool Proposing (๋„๊ตฌ ์ œ์•ˆ)

  • ์ž…๋ ฅ: ํƒœ์Šคํฌ์— ๋Œ€ํ•œ ๋ช‡ ๊ฐ€์ง€ ๋ฐ๋ชจ ์˜ˆ์‹œ
  • ๊ณผ์ •: LLM์ด ๋ฐ๋ชจ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ผ๋ฐ˜ํ™”๋œ Python ํ•จ์ˆ˜ ์ž‘์„ฑ
  • ์ถœ๋ ฅ: ์ดˆ๊ธฐ ๋„๊ตฌ ์ฝ”๋“œ
# ์˜ˆ์‹œ: Word Sorting ํƒœ์Šคํฌ์šฉ ๋„๊ตฌ
def sort_words(words: list) -> list:
    """๋‹จ์–ด ๋ฆฌ์ŠคํŠธ๋ฅผ ์•ŒํŒŒ๋ฒณ ์ˆœ์„œ๋กœ ์ •๋ ฌ"""
    return sorted(words)

2๋‹จ๊ณ„: Tool Validation (๋„๊ตฌ ๊ฒ€์ฆ)

  • ๊ฒ€์ฆ ์ƒ˜ํ”Œ์„ ์ด์šฉํ•ด ์œ ๋‹› ํ…Œ์ŠคํŠธ ์ž๋™ ์ƒ์„ฑ
  • ์ œ์•ˆ๋œ ๋„๊ตฌ์— ๋Œ€ํ•ด ํ…Œ์ŠคํŠธ ์‹คํ–‰
  • ํ…Œ์ŠคํŠธ ์‹คํŒจ ์‹œ:
    • ์˜ค๋ฅ˜ ๊ธฐ๋ก์„ ํžˆ์Šคํ† ๋ฆฌ์— ์ถ”๊ฐ€
    • Tool Maker๊ฐ€ ์˜ค๋ฅ˜ ์ˆ˜์ • ์‹œ๋„
    • ์žฌ๊ฒ€์ฆ ๋ฐ˜๋ณต

3๋‹จ๊ณ„: Tool Wrapping (๋„๊ตฌ ํฌ์žฅ)

  • ๊ฒ€์ฆ ํ†ต๊ณผ ์‹œ ๋„๊ตฌ๋ฅผ Tool User๊ฐ€ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํŒจํ‚ค์ง•
  • API ํ˜•ํƒœ๋กœ ๋ž˜ํ•‘ํ•˜์—ฌ ๋ฌธ์„œํ™”
  • ์‚ฌ์ „ ์ •์˜๋œ ์‹คํŒจ ์ž„๊ณ„๊ฐ’ ์ดˆ๊ณผ ์‹œ ๋„๊ตฌ ์ƒ์„ฑ ์‹คํŒจ ์ฒ˜๋ฆฌ

Tool Using ๋‹จ๊ณ„

  • Tool User(๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ)๊ฐ€ ์ƒ์„ฑ๋œ ๋„๊ตฌ๋ฅผ ํ™œ์šฉ
  • ํ”„๋กฌํ”„ํŠธ์— ๋„๊ตฌ API ๋ฌธ์„œ ํฌํ•จ
  • ์ƒˆ๋กœ์šด ๋ฌธ์ œ ์ธ์Šคํ„ด์Šค์— ๋„๊ตฌ ์ ์šฉํ•˜์—ฌ ํ•ด๊ฒฐ

Dispatcher (๋””์ŠคํŒจ์ฒ˜)

์˜จ๋ผ์ธ ํ™˜๊ฒฝ์—์„œ ์ˆœ์ฐจ์ ์œผ๋กœ ๋„์ฐฉํ•˜๋Š” ํƒœ์Šคํฌ ์ธ์Šคํ„ด์Šค ๊ด€๋ฆฌ:

  1. ํƒœ์Šคํฌ ๋ถ„๋ฅ˜
    • ๊ธฐ์กด ๋„๊ตฌ๋กœ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•œ์ง€ ํ‰๊ฐ€
    • ์ƒˆ๋กœ์šด ๋„๊ตฌ ์ƒ์„ฑ ํ•„์š” ์—ฌ๋ถ€ ํŒ๋‹จ
  2. ๋ผ์šฐํŒ… ๊ฒฐ์ •
    • ๊ธฐ์กด ๋„๊ตฌ โ†’ Tool User๋กœ ์ „๋‹ฌ
    • ์ƒˆ ๋„๊ตฌ ํ•„์š” โ†’ Tool Maker๋กœ ์ „๋‹ฌ
    • ๋‹จ์ˆœ ๋ฌธ์ œ โ†’ ์ง์ ‘ ํ•ด๊ฒฐ
  3. ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ ํ™œ์šฉ
    • Dispatcher ์ž์ฒด๋„ ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ ์‚ฌ์šฉ
    • ์ „์ฒด ์‹œ์Šคํ…œ ๋น„์šฉ ์ตœ์†Œํ™”

๐Ÿ“Š ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

์‹คํ—˜ ์„ค์ •

๊ตฌ์„ฑ ์š”์†Œ ๋ชจ๋ธ
Tool Maker GPT-4
Tool User GPT-3.5 Turbo
Dispatcher GPT-3.5 Turbo

ํ‰๊ฐ€ ํƒœ์Šคํฌ (Big-Bench)

  • Logical Deduction: ๋…ผ๋ฆฌ์  ์ถ”๋ก  ํƒœ์Šคํฌ
  • Tracking Shuffled Objects: ๊ฐ์ฒด ์ถ”์  ํƒœ์Šคํฌ
  • Word Sorting: ๋‹จ์–ด ์ •๋ ฌ ํƒœ์Šคํฌ
  • ๊ธฐํƒ€ ๋ณต์žกํ•œ ์ถ”๋ก  ํƒœ์Šคํฌ๋“ค

์ฃผ์š” ๊ฒฐ๊ณผ

์„ฑ๋Šฅ ๋น„๊ต

์„ค์ • ์„ฑ๋Šฅ ๋น„์šฉ
GPT-4 (Maker + User) ๋†’์Œ ๋งค์šฐ ๋†’์Œ
LATM (GPT-4 Maker + GPT-3.5 User) GPT-4์™€ ๋™๋“ฑ ๋Œ€ํญ ์ ˆ๊ฐ
GPT-3.5 ๋‹จ๋… ๋‚ฎ์Œ ๋‚ฎ์Œ

ํƒœ์Šคํฌ ๋‚œ์ด๋„๋ณ„ ๊ฒฐ๊ณผ

  • ์–ด๋ ค์šด ํƒœ์Šคํฌ (Logical Deduction, Tracking Shuffled Objects):
    • GPT-3.5 ๋‹จ๋…: 5ํšŒ ์‹œ๋„ ๋ชจ๋‘ ์‹คํŒจ
    • LATM: GPT-4 ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ ๋‹ฌ์„ฑ
  • ์‰ฌ์šด ํƒœ์Šคํฌ (Word Sorting):
    • GPT-3.5๋„ ๋„๊ตฌ ์ƒ์„ฑ ๊ฐ€๋Šฅ
    • Tool Maker๋กœ ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ ์‚ฌ์šฉ ๊ฐ€๋Šฅ

๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ

  • GPT-4 ๋Œ€๋น„ GPT-3.5 ๊ฐ€๊ฒฉ: ์•ฝ 1/20
  • Tool Using์ด ์ „์ฒด ์ถ”๋ก ์˜ ๋Œ€๋ถ€๋ถ„์„ ์ฐจ์ง€
  • ์ถ”๋ก  ๋น„์šฉ ์•ฝ 95% ์ ˆ๊ฐ (๋‹ค์ˆ˜ ์ธ์Šคํ„ด์Šค ์ฒ˜๋ฆฌ ์‹œ)

๐Ÿ’ช ๊ฐ•์  ๋ฐ ๊ธฐ์—ฌ

ํ•™์ˆ ์  ๊ธฐ์—ฌ

  1. ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„ ์ œ์‹œ
    • Tool Use โ†’ Tool Make๋กœ ๊ฐœ๋… ํ™•์žฅ
    • LLM์˜ ์ž๊ธฐ ๊ฐœ์„ (self-improvement) ๊ฐ€๋Šฅ์„ฑ ์ž…์ฆ
  2. Functional Caching ๊ฐœ๋…
    • ์‘๋‹ต ์บ์‹ฑ์ด ์•„๋‹Œ ๊ธฐ๋Šฅ ์บ์‹ฑ
    • ๋” ๋„“์€ ๋ฒ”์œ„์˜ ์š”์ฒญ์— ์ ์šฉ ๊ฐ€๋Šฅ
  3. ๊ฒฝ์ œ์  LLM ์„œ๋น™ ํ”„๋ ˆ์ž„์›Œํฌ
    • ์„ฑ๋Šฅ๊ณผ ๋น„์šฉ์˜ ํšจ์œจ์  ๊ท ํ˜•์  ์ œ์‹œ

์‹ค์šฉ์  ์žฅ์ 

  1. ๋น„์šฉ ํšจ์œจ์„ฑ
    • ๋Œ€๊ทœ๋ชจ ์„œ๋น„์Šค์—์„œ ๋น„์šฉ ๋Œ€ํญ ์ ˆ๊ฐ
    • ์†Œ๊ทœ๋ชจ ์กฐ์ง๋„ ๊ณ ์„ฑ๋Šฅ AI ์‹œ์Šคํ…œ ๊ตฌ์ถ• ๊ฐ€๋Šฅ
  2. ํ™•์žฅ์„ฑ
    • ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ์ž๋™ ์ ์‘
    • ๋„๊ตฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ง€์†์  ํ™•์žฅ
  3. ๋ชจ๋“ˆ์„ฑ
    • Maker, User, Dispatcher ๋…๋ฆฝ์  ์—…๊ทธ๋ ˆ์ด๋“œ ๊ฐ€๋Šฅ
    • ๊ฐ ๊ตฌ์„ฑ ์š”์†Œ ์ตœ์ ํ™” ์šฉ์ด

โš ๏ธ ํ•œ๊ณ„์ 

๋„๊ตฌ ํ’ˆ์งˆ ๋ฌธ์ œ

  • ์ƒ์„ฑ๋œ ๋„๊ตฌ์˜ ์‹ ๋ขฐ์„ฑ ๋ณด์žฅ ์–ด๋ ค์›€
  • ๋„๊ตฌ ๋‚ด ์ž ์žฌ์  ๋ฒ„๊ทธ๋‚˜ ํŽธํ–ฅ ์กด์žฌ ๊ฐ€๋Šฅ์„ฑ
  • ์•ˆ์ „์„ฑ ๊ฒ€์ฆ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ•„์š”

ํƒœ์Šคํฌ ๋ฒ”์œ„ ์ œํ•œ

  • ๋ชจ๋“  ํƒœ์Šคํฌ๊ฐ€ Python ํ•จ์ˆ˜๋กœ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•˜์ง€ ์•Š์Œ
  • ์ฐฝ์˜์ , ์ฃผ๊ด€์  ํƒœ์Šคํฌ์—๋Š” ๋ถ€์ ํ•ฉ
  • ๋„๊ตฌํ™”ํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฌธ์ œ ์œ ํ˜• ์กด์žฌ

๊ธฐ์ˆ ์  ํ•œ๊ณ„

  • ๋„๊ตฌ ์ƒ์„ฑ ์‹คํŒจ ์‹œ ์ฒ˜๋ฆฌ ๋ฐฉ์•ˆ ๋ฏธํก
  • Dispatcher์˜ ์ •ํ™•ํ•œ ํŒ๋‹จ์— ์˜์กด
  • ๋„๊ตฌ ๊ฐ„ ์ฒด์ด๋‹(์—ฐ์‡„ ์‚ฌ์šฉ) ๋ฏธ์ง€์›

ํ‰๊ฐ€ ํ•œ๊ณ„

  • Big-Bench ์ค‘์‹ฌ์˜ ์ œํ•œ๋œ ํ‰๊ฐ€
  • ์‹ค์ œ ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ์—์„œ์˜ ๊ฒ€์ฆ ๋ถ€์กฑ
  • ์žฅ๊ธฐ ์‚ฌ์šฉ ์‹œ ๋„๊ตฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๊ด€๋ฆฌ ์ด์Šˆ

๐Ÿ”— ๊ด€๋ จ ๋…ผ๋ฌธ

์„ ํ–‰ ์—ฐ๊ตฌ

๋…ผ๋ฌธ ํ•ต์‹ฌ ๋‚ด์šฉ LATM๊ณผ์˜ ๊ด€๊ณ„
Toolformer (Meta, 2023) LLM์ด ๋„๊ตฌ ์‚ฌ์šฉ๋ฒ•์„ ์ž๊ธฐ ์ง€๋„ ํ•™์Šต Tool Use์˜ ๊ธฐ์ดˆ, LATM์€ Tool Make๋กœ ํ™•์žฅ
ReAct (Google, 2022) ์ถ”๋ก (Reasoning)๊ณผ ํ–‰๋™(Acting) ๊ฒฐํ•ฉ ๋„๊ตฌ ์„ ํƒ/์‚ฌ์šฉ ๋ฐฉ๋ฒ•๋ก  ์ œ๊ณต
Program-aided LM ํ”„๋กœ๊ทธ๋žจ ์ƒ์„ฑ์„ ํ†ตํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ LATM์˜ ๋„๊ตฌ = ์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ํ”„๋กœ๊ทธ๋žจ
Chain-of-Thought ๋‹จ๊ณ„์  ์ถ”๋ก  ํ”„๋กฌํ”„ํŒ… LATM์˜ ๋„๊ตฌ ์ƒ์„ฑ์— ํ™œ์šฉ

ํ›„์† ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • Tool Learning: ๋„๊ตฌ ํ•™์Šต ๋ฐ ์‚ฌ์šฉ์˜ ์ฒด๊ณ„์  ์—ฐ๊ตฌ
  • Autonomous Agents: AutoGPT, BabyAGI ๋“ฑ ์ž์œจ ์—์ด์ „ํŠธ
  • Multi-Agent Systems: ๋‹ค์ค‘ ์—์ด์ „ํŠธ ํ˜‘์—… ์‹œ์Šคํ…œ

๐Ÿ’ป ์‹ค๋ฌด ์ ์šฉ ํฌ์ธํŠธ

์ ์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค

  1. ๊ณ ๊ฐ ์„œ๋น„์Šค ์ž๋™ํ™”
    • ์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ ์œ ํ˜•๋ณ„ ๋„๊ตฌ ์ƒ์„ฑ
    • ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ๋กœ ๋Œ€๋Ÿ‰ ๋ฌธ์˜ ์ฒ˜๋ฆฌ
  2. ๋ฐ์ดํ„ฐ ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ
    • ๋ฐ˜๋ณต์  ๋ถ„์„ ํƒœ์Šคํฌ ๋„๊ตฌํ™”
    • ๋น„์ „๋ฌธ๊ฐ€๋„ ๊ณ ๊ธ‰ ๋ถ„์„ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅ
  3. ์ฝ”๋“œ ์ƒ์„ฑ ์„œ๋น„์Šค
    • ๊ณตํ†ต ํŒจํ„ด์˜ ์œ ํ‹ธ๋ฆฌํ‹ฐ ํ•จ์ˆ˜ ๋„๊ตฌํ™”
    • ๋น„์šฉ ํšจ์œจ์ ์ธ ์ฝ”๋”ฉ ์–ด์‹œ์Šคํ„ดํŠธ

๊ตฌํ˜„ ์‹œ ๊ณ ๋ ค์‚ฌํ•ญ

# LATM ํŒจํ„ด ๊ตฌํ˜„ ์˜ˆ์‹œ ๊ตฌ์กฐ
class LATM:
    def __init__(self):
        self.tool_maker = GPT4()      # ๊ณ ์„ฑ๋Šฅ ๋ชจ๋ธ
        self.tool_user = GPT35()      # ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ
        self.dispatcher = GPT35()      # ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ
        self.tool_cache = {}           # ๋„๊ตฌ ์บ์‹œ

    def process(self, task):
        # 1. Dispatcher๊ฐ€ ํƒœ์Šคํฌ ๋ถ„๋ฅ˜
        tool_id = self.dispatcher.classify(task)

        # 2. ๊ธฐ์กด ๋„๊ตฌ ์žˆ์œผ๋ฉด ์‚ฌ์šฉ
        if tool_id in self.tool_cache:
            return self.tool_user.use(
                self.tool_cache[tool_id], task
            )

        # 3. ์—†์œผ๋ฉด ์ƒˆ ๋„๊ตฌ ์ƒ์„ฑ
        new_tool = self.tool_maker.create(task)
        self.tool_cache[tool_id] = new_tool

        return self.tool_user.use(new_tool, task)

๋น„์šฉ ์ตœ์ ํ™” ์ „๋žต

  1. ๋„๊ตฌ ์บ์‹œ ๊ด€๋ฆฌ
    • ์‚ฌ์šฉ ๋นˆ๋„ ๊ธฐ๋ฐ˜ ์บ์‹œ ์ •์ฑ…
    • ์œ ์‚ฌ ๋„๊ตฌ ํ†ตํ•ฉ/์žฌํ™œ์šฉ
  2. ๋ชจ๋ธ ์„ ํƒ ์ „๋žต
    • ํƒœ์Šคํฌ ๋‚œ์ด๋„์— ๋”ฐ๋ฅธ ๋™์  ๋ชจ๋ธ ์„ ํƒ
    • ๋น„์šฉ-์„ฑ๋Šฅ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„ ๋ชจ๋‹ˆํ„ฐ๋ง
  3. ์ ์ง„์  ๋„์ž…
    • ๊ณ ๋นˆ๋„ ํƒœ์Šคํฌ๋ถ€ํ„ฐ ๋„๊ตฌํ™”
    • ROI ์ธก์ • ๋ฐ ํ™•๋Œ€ ์ ์šฉ

์ฃผ์˜์‚ฌํ•ญ

  • ๋„๊ตฌ ๊ฒ€์ฆ ํ”„๋กœ์„ธ์Šค ํ•„์ˆ˜ ๊ตฌ์ถ•
  • ๋„๊ตฌ ๋ฒ„์ „ ๊ด€๋ฆฌ ๋ฐ ์—…๋ฐ์ดํŠธ ์ •์ฑ… ์ˆ˜๋ฆฝ
  • ์˜ˆ์™ธ ์ฒ˜๋ฆฌ ๋ฐ ํด๋ฐฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋งˆ๋ จ

๐Ÿท๏ธ Tags

#LLM #ToolMaking #ToolUse #LATM #ICLR2024 #GPT4 #GPT35 #CostOptimization #FunctionalCaching #AIAgent #Automation #DeepMind #Google #Princeton #Stanford #ReasoningTasks #BigBench #PythonTools #Dispatcher #MakerUser


๐Ÿ“š ์ฐธ๊ณ  ์ž๋ฃŒ

  • arXiv ๋…ผ๋ฌธ
  • ICLR 2024 Proceedings
  • OpenReview
  • GitHub Repository
์ž‘์„ฑ์ž

skycave

Follow Me
๋‹ค๋ฅธ ๊ธฐ์‚ฌ
Previous

[AI Paper] LLMOrbit: A Circular Taxonomy of Large Language Models

Next

[AI Paper] Learning Latency-Aware Orchestration for Parallel Multi-Agent Systems

๋Œ“๊ธ€ ์—†์Œ! ์ฒซ ๋Œ“๊ธ€์„ ๋‚จ๊ฒจ๋ณด์„ธ์š”.

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ ์‘๋‹ต ์ทจ์†Œ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค

์ตœ์‹ ๊ธ€

  • ๐Ÿ“Š ์ผ์ผ ๋‰ด์Šค ๊ฐ์„ฑ ๋ฆฌํฌํŠธ – 2026-01-28
  • AI ์‹œ์Šคํ…œ์˜ ๋ฌธ๋งฅ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰(Contextual Retrieval) | Anthropic
  • “Think” ํˆด: Claude๊ฐ€ ๋ฉˆ์ถฐ์„œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ | Anthropic
  • Claude Code ๋ชจ๋ฒ” ์‚ฌ๋ก€ \ Anthropic
  • ์šฐ๋ฆฌ๊ฐ€ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ ๋ฐฉ๋ฒ•
Copyright 2026 — skycave's Blog. All rights reserved. Blogsy WordPress Theme