๋ณธ๋ฌธ์œผ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
-
skycave's Blog
skycave's Blog
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
๋‹ซ๊ธฐ

๊ฒ€์ƒ‰

AI

[AI Paper] ๐Ÿ“„ Towards Reliable ML Feature Engineering via Planning in Constrained-Topology of LLM Agents

By skycave
2026๋…„ 01์›” 25์ผ 5 Min Read
0

๐Ÿ“„ Towards Reliable ML Feature Engineering via Planning in Constrained-Topology of LLM Agents

๋ฉ”ํƒ€ ์ •๋ณด

์ €์ž: Himanshu Thakur, Anusha Kamath, Anurag Muthyala, Dhwani Sanmukhani, Smruthi Mukund, Jay Katukuri

์ถœ์ฒ˜: arXiv:2601.10820v1

๋ฐœํ‘œ์ผ: 2026๋…„ 1์›”

๋ผ์ด์„ ์Šค: CC BY 4.0


ํ•œ์ค„ ์š”์•ฝ

[!tip] ํ•ต์‹ฌ ๋ฉ”์‹œ์ง€
LLM ์—์ด์ „ํŠธ์˜ ์ œํ•œ๋œ ํ† ํด๋กœ์ง€ (Constrained-Topology)์™€ ์ฒด๊ณ„์  ๊ณ„ํš ๋ฉ”์ปค๋‹ˆ์ฆ˜ (Planning)์„ ํ†ตํ•ด ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๊ณ  ํ•ด์„ ๊ฐ€๋Šฅํ•œ ์ž๋™ํ™”๋œ ML ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•


์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ

๊ธฐ์กด AutoML์˜ ํ•œ๊ณ„

[!warning] ๋ฌธ์ œ์ 
– ์ผ๊ด€์„ฑ ๋ถ€์กฑ: ๊ฐ™์€ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์‹คํ–‰ํ•  ๋•Œ๋งˆ๋‹ค ๋‹ค๋ฅธ ํ”ผ์ฒ˜ ์ƒ์„ฑ
– ํ•ด์„ ๋ถˆ๊ฐ€๋Šฅ์„ฑ: ์™œ ํŠน์ • ํ”ผ์ฒ˜๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ๋Š”์ง€ ์ดํ•ดํ•˜๊ธฐ ์–ด๋ ค์›€
– ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ: ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ์—์„œ ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅํ•œ ๋™์ž‘
– ๊ฒ€์ฆ ์–ด๋ ค์›€: ์ž๋™ ์ƒ์„ฑ๋œ ํ”ผ์ฒ˜์˜ ํ’ˆ์งˆ ํ‰๊ฐ€ ๊ณค๋ž€

์—ฐ๊ตฌ ๋™๊ธฐ

  1. ์ฝ”๋“œ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ๋ฐœ์ „: ์ตœ๊ทผ LLM์˜ ์ฝ”๋“œ ์ƒ์„ฑ ๋Šฅ๋ ฅ์ด ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง ์ž๋™ํ™”์˜ ์ƒˆ๋กœ์šด ๊ธฐํšŒ ์ œ๊ณต
  2. ์‹ค๋ฌด ๋„์ž…์˜ ์žฅ๋ฒฝ:
    • ํ”„๋กœ๋•์…˜๊ธ‰ ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง์˜ ๋ฐ˜๋ณต์ ์ด๊ณ  ๋ณต์žกํ•œ ํ”„๋กœ์„ธ์Šค๋ฅผ ๋‹ด์€ ๋ฐ์ดํ„ฐ์…‹ ๋ถ€์กฑ
    • CoPilot, Devin ๋“ฑ ๊ธฐ์กด ์ฝ”๋”ฉ ์—์ด์ „ํŠธ์˜ ํŒ€ ๊ณ ์œ  ๋„๊ตฌ/์ฝ”๋“œ๋ฒ ์ด์Šค/์›Œํฌํ”Œ๋กœ์šฐ์™€์˜ ํ†ตํ•ฉ ๋ฐ ๊ฐœ์ธํ™” ํ•œ๊ณ„
  3. ์‹ ๋ขฐ์„ฑ ์š”๊ตฌ: ML ํŒ€์ด ์‹ค์ œ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ž๋™ํ™” ์‹œ์Šคํ…œ ํ•„์š”

ํ•ต์‹ฌ ์•„์ด๋””์–ด

1. Constrained-Topology ํ”„๋ ˆ์ž„์›Œํฌ

[!important] ์ œํ•œ๋œ ํ† ํด๋กœ์ง€
์—์ด์ „ํŠธ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ตฌ์กฐ์ ์œผ๋กœ ์ œํ•œํ•˜์—ฌ ๋ฌด๋ถ„๋ณ„ํ•œ ํ˜‘์—…์œผ๋กœ ์ธํ•œ ํ˜ผ๋ž€ ๋ฐฉ์ง€

  • ์ž์œ ๋กœ์šด ํ†ต์‹  ๋Œ€์‹  ์ •์˜๋œ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•œ ํ†ต์‹ 
  • ์—ญํ• ๋ณ„ ์—์ด์ „ํŠธ ๋ถ„๋ฆฌ ๋ฐ ๋ช…ํ™•ํ•œ ์ฑ…์ž„ ๊ฒฝ๊ณ„
  • ์ค‘๋ณต ๋ฐ ์ถฉ๋Œํ•˜๋Š” ํ”ผ์ฒ˜ ์ œ์•ˆ ๋ฐฉ์ง€
graph TD
    A[Planning Agent] --> B[Feature Proposal Agent]
    A --> C[Validation Agent]
    B --> D[Integration Agent]
    C --> D
    D --> E[Final Features]

2. ์ฒด๊ณ„์ ์ธ Planning ๋ฉ”์ปค๋‹ˆ์ฆ˜

[!note] ๊ณ„ํš ์ค‘์‹ฌ ์ ‘๊ทผ
์‹คํ–‰ ์ „์— ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์—์ด์ „ํŠธ ๊ฐ„ ํ˜‘์—…์„ ์กฐ์ •

  • ํ”ผ์ฒ˜ ์ƒ์„ฑ ์ „ ๋ชฉํ‘œ ๋ฐ ์ œ์•ฝ ์กฐ๊ฑด ๋ช…ํ™•ํ™”
  • ๋‹จ๊ณ„๋ณ„ ์‹คํ–‰ ๊ณ„ํš ์ˆ˜๋ฆฝ
  • ์—์ด์ „ํŠธ ๊ฐ„ ์ผ๊ด€์„ฑ ์žˆ๋Š” ์˜์‚ฌ๊ฒฐ์ •

3. ์‹ ๋ขฐ์„ฑ ๋ฐ ํ•ด์„๊ฐ€๋Šฅ์„ฑ ํ–ฅ์ƒ

์‹ ๋ขฐ์„ฑ ๊ฐœ์„  ์š”์†Œ:
– ๊ตฌ์กฐํ™”๋œ ํ”„๋กœ์„ธ์Šค๋กœ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๊ฒฐ๊ณผ
– ๊ฒ€์ฆ ๋‹จ๊ณ„๋ฅผ ํ†ตํ•œ ํ’ˆ์งˆ ๋ณด์žฅ
– ๋‹จ๊ณ„๋ณ„ ์ถ”์  ๊ฐ€๋Šฅ์„ฑ

ํ•ด์„๊ฐ€๋Šฅ์„ฑ ๊ฐœ์„  ์š”์†Œ:
– ๊ฐ ํ”ผ์ฒ˜์˜ ์ƒ์„ฑ ์ด์œ  ๊ธฐ๋ก
– ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์˜ ํˆฌ๋ช…์„ฑ
– ์‚ฌ๋žŒ์ด ์ดํ•ด ๊ฐ€๋Šฅํ•œ ํ”ผ์ฒ˜ ์„ค๋ช…


๋ฐฉ๋ฒ•๋ก  ๋ฐ ์•„ํ‚คํ…์ฒ˜

์‹œ์Šคํ…œ ๊ตฌ์„ฑ ์š”์†Œ

1. ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์•„ํ‚คํ…์ฒ˜

์—์ด์ „ํŠธ ์œ ํ˜• ์—ญํ•  ์ฑ…์ž„
Planning Agent ์ „๋žต ์ˆ˜๋ฆฝ ๋ชฉํ‘œ ์„ค์ •, ์ œ์•ฝ ์กฐ๊ฑด ์ •์˜, ์ „์ฒด ํ”„๋กœ์„ธ์Šค ์กฐ์œจ
Proposal Agent ํ”ผ์ฒ˜ ์ œ์•ˆ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๊ธฐ๋ฐ˜ ํ”ผ์ฒ˜ ์•„์ด๋””์–ด ์ƒ์„ฑ
Validation Agent ๊ฒ€์ฆ ์ œ์•ˆ๋œ ํ”ผ์ฒ˜์˜ ์œ ํšจ์„ฑ, ์‹คํ–‰ ๊ฐ€๋Šฅ์„ฑ ํ‰๊ฐ€
Integration Agent ํ†ตํ•ฉ ์Šน์ธ๋œ ํ”ผ์ฒ˜์˜ ์ฝ”๋“œ ๊ตฌํ˜„ ๋ฐ ํ†ตํ•ฉ

2. ์ œํ•œ๋œ ํ†ต์‹  ๊ฒฝ๋กœ

[!example] ํ†ต์‹  ์ œ์•ฝ

โœ… ํ—ˆ์šฉ๋œ ํ†ต์‹ :
- Planning โ†’ Proposal (๋ชฉํ‘œ ์ „๋‹ฌ)
- Planning โ†’ Validation (ํ‰๊ฐ€ ๊ธฐ์ค€ ์ „๋‹ฌ)
- Proposal โ†’ Integration (์Šน์ธ๋œ ํ”ผ์ฒ˜ ์ „๋‹ฌ)
- Validation โ†’ Integration (๊ฒ€์ฆ ๊ฒฐ๊ณผ ์ „๋‹ฌ)

โŒ ๊ธˆ์ง€๋œ ํ†ต์‹ :
- Proposal โ†” Proposal (์ง์ ‘ ํ˜‘์˜ ๊ธˆ์ง€)
- Validation โ†” Proposal (์ง์ ‘ ํ”ผ๋“œ๋ฐฑ ๊ธˆ์ง€)

3๋‹จ๊ณ„ ํ”„๋กœ์„ธ์Šค

Phase 1: Planning (๊ณ„ํš)

# ์ˆ˜๋„ ์ฝ”๋“œ
def planning_phase(dataset, task_requirements):
    """
    ๋ชฉํ‘œ ์„ค์ • ๋ฐ ์ „๋žต ์ˆ˜๋ฆฝ
    """
    objectives = define_objectives(task_requirements)
    constraints = identify_constraints(dataset)
    strategy = create_strategy(objectives, constraints)
    return strategy

์ฃผ์š” ํ™œ๋™:
– ๋ฐ์ดํ„ฐ์…‹ ํŠน์„ฑ ๋ถ„์„
– ML ํƒœ์Šคํฌ ๋ชฉํ‘œ ์ดํ•ด
– ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง ์ „๋žต ์ˆ˜๋ฆฝ
– ํ‰๊ฐ€ ๊ธฐ์ค€ ์ •์˜

Phase 2: Proposal & Validation (์ œ์•ˆ ๋ฐ ๊ฒ€์ฆ)

# ์ˆ˜๋„ ์ฝ”๋“œ
def proposal_validation_cycle(strategy, dataset):
    """
    ํ”ผ์ฒ˜ ์ œ์•ˆ ๋ฐ ๊ฒ€์ฆ์˜ ๋ฐ˜๋ณต ์‚ฌ์ดํด
    """
    proposals = []
    for iteration in range(max_iterations):
        # ํ”ผ์ฒ˜ ์ œ์•ˆ
        new_features = proposal_agent.generate(strategy, dataset)

        # ๊ฒ€์ฆ
        validation_results = validation_agent.evaluate(new_features)

        # ์Šน์ธ๋œ ํ”ผ์ฒ˜๋งŒ ์„ ํƒ
        approved = [f for f in new_features if validation_results[f].passed]
        proposals.extend(approved)

        if convergence_criteria_met(proposals):
            break

    return proposals

์ œ์•ˆ ๋‹จ๊ณ„:
– ๋ฐ์ดํ„ฐ ํŒจํ„ด ๋ถ„์„
– ๋„๋ฉ”์ธ ์ง€์‹ ํ™œ์šฉ
– ๋‹ค์–‘ํ•œ ๋ณ€ํ™˜ ๊ธฐ๋ฒ• ์ ์šฉ
– ํ”ผ์ฒ˜ ํ›„๋ณด ์ƒ์„ฑ

๊ฒ€์ฆ ๋‹จ๊ณ„:
– ํ†ต๊ณ„์  ์œ ์˜์„ฑ ๊ฒ€์‚ฌ
– ์‹คํ–‰ ๊ฐ€๋Šฅ์„ฑ ํ™•์ธ
– ์ค‘๋ณต์„ฑ ๊ฒ€์‚ฌ
– ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ํ‰๊ฐ€

Phase 3: Integration (ํ†ตํ•ฉ)

# ์ˆ˜๋„ ์ฝ”๋“œ
def integration_phase(approved_features, codebase):
    """
    ์Šน์ธ๋œ ํ”ผ์ฒ˜๋ฅผ ์ฝ”๋“œ๋ฒ ์ด์Šค์— ํ†ตํ•ฉ
    """
    for feature in approved_features:
        # ์ฝ”๋“œ ์ƒ์„ฑ
        code = generate_feature_code(feature)

        # ํ˜ธํ™˜์„ฑ ๊ฒ€์‚ฌ
        compatibility_check(code, codebase)

        # ํ†ตํ•ฉ
        integrate_to_codebase(code)

        # ๋ฌธ์„œํ™”
        document_feature(feature, rationale)

    return integrated_codebase

ํ†ตํ•ฉ ํ™œ๋™:
– ํ”ผ์ฒ˜ ๋ณ€ํ™˜ ์ฝ”๋“œ ์ƒ์„ฑ
– ๊ธฐ์กด ํŒŒ์ดํ”„๋ผ์ธ๊ณผ์˜ ํ˜ธํ™˜์„ฑ ํ™•๋ณด
– ๋‹จ์œ„ ํ…Œ์ŠคํŠธ ์ž‘์„ฑ
– ๋ฌธ์„œํ™” ๋ฐ ์ฃผ์„ ์ถ”๊ฐ€


์‹คํ—˜ ๊ฒฐ๊ณผ

๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹

๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉ๋œ ์ฃผ์š” ๋ฐ์ดํ„ฐ์…‹ (Table 1-5 ์ฐธ์กฐ):
– ํ‘œ์ค€ ML ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹
– ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ ๋ฐ ๋ณต์žก๋„

์„ฑ๋Šฅ ๊ฐœ์„ 

[!success] ์ฃผ์š” ์„ฑ๊ณผ
์ผ๊ด€์„ฑ (Consistency):
– ๋™์ผ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ฐ˜๋ณต ์‹คํ–‰ ์‹œ ๋†’์€ ์žฌํ˜„์„ฑ
– ๊ธฐ์กด AutoML ๋Œ€๋น„ ๋ณ€๋™์„ฑ ๊ฐ์†Œ

ํ’ˆ์งˆ (Quality):
– ์ƒ์„ฑ๋œ ํ”ผ์ฒ˜์˜ ์˜ˆ์ธก ์„ฑ๋Šฅ ํ–ฅ์ƒ
– ๋” ํ•ด์„ ๊ฐ€๋Šฅํ•œ ํ”ผ์ฒ˜ ์ƒ์„ฑ

์‹ ๋ขฐ์„ฑ (Reliability):
– ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๋™์ž‘
– ๊ฒ€์ฆ ๋‹จ๊ณ„๋ฅผ ํ†ตํ•œ ์˜ค๋ฅ˜ ๊ฐ์†Œ

๋น„๊ต ๋ถ„์„

๋ฉ”ํŠธ๋ฆญ ๊ธฐ์กด AutoML Constrained-Topology ๊ฐœ์„ ์œจ
์žฌํ˜„์„ฑ ๋‚ฎ์Œ ๋†’์Œ โ†‘
ํ•ด์„๊ฐ€๋Šฅ์„ฑ ๋‚ฎ์Œ ๋†’์Œ โ†‘
ํ”ผ์ฒ˜ ํ’ˆ์งˆ ์ค‘๊ฐ„ ๋†’์Œ โ†‘
๊ณ„์‚ฐ ์‹œ๊ฐ„ ๋น ๋ฆ„ ์ค‘๊ฐ„ โ†“

๊ฐ•์  ๋ฐ ํ•œ๊ณ„์ 

๊ฐ•์ 

[!tip] ์ฃผ์š” ์žฅ์ 
1. ํ•ด์„๊ฐ€๋Šฅ์„ฑ: ๊ฐ ํ”ผ์ฒ˜๊ฐ€ ์™œ ์ƒ์„ฑ๋˜์—ˆ๋Š”์ง€ ์ถ”์  ๊ฐ€๋Šฅ
2. ์‹ ๋ขฐ์„ฑ: ๊ตฌ์กฐํ™”๋œ ํ”„๋กœ์„ธ์Šค๋กœ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๊ฒฐ๊ณผ
3. ํ’ˆ์งˆ ๋ณด์žฅ: ๊ฒ€์ฆ ๋‹จ๊ณ„๋ฅผ ํ†ตํ•œ ํ”ผ์ฒ˜ ํ’ˆ์งˆ ๊ด€๋ฆฌ
4. ํ˜‘์—… ํšจ์œจ์„ฑ: ์ œํ•œ๋œ ํ† ํด๋กœ์ง€๋กœ ์ค‘๋ณต ๋ฐ ์ถฉ๋Œ ๋ฐฉ์ง€
5. ํ”„๋กœ๋•์…˜ ์ ํ•ฉ์„ฑ: ์‹ค์ œ ML ํŒ€์˜ ์›Œํฌํ”Œ๋กœ์šฐ์— ํ†ตํ•ฉ ๊ฐ€๋Šฅ

ํ•œ๊ณ„์ 

[!warning] ๊ฐœ์„  ํ•„์š” ์˜์—ญ
1. ํ™•์žฅ์„ฑ (Scalability):
– ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์…‹ (์ˆ˜์ฒœ~์ˆ˜๋งŒ ๊ฐœ ํ”ผ์ฒ˜)์—์„œ์˜ ์„ฑ๋Šฅ ๋ฏธ๊ฒ€์ฆ
– ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์—์„œ์˜ ๊ณ„์‚ฐ ๋ถ€๋‹ด

  1. ๊ณ„์‚ฐ ์˜ค๋ฒ„ํ—ค๋“œ (Computational Overhead):
    • Planning ๋‹จ๊ณ„์˜ ์ถ”๊ฐ€ ๊ณ„์‚ฐ ๋น„์šฉ
    • ๊ธฐ์กด AutoML ๋Œ€๋น„ ์‹คํ–‰ ์‹œ๊ฐ„ ์ฆ๊ฐ€
  2. ๋„๋ฉ”์ธ ํŠนํ™” (Domain Specificity):
    • ํŠน์ • ๋„๋ฉ”์ธ์˜ ๋ณต์žกํ•œ ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง ํƒœ์Šคํฌ์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ ํ•„์š”
    • ๋„๋ฉ”์ธ ์ง€์‹ ํ†ตํ•ฉ ๋ฐฉ๋ฒ•๋ก  ๊ฐœ์„  ์—ฌ์ง€
  3. ์ œ์•ฝ ํŒจํ„ด (Constraint Patterns):
    • ๋‹ค์–‘ํ•œ ๋ฌธ์ œ ์œ ํ˜•์— ๋งž๋Š” ์ตœ์  ํ† ํด๋กœ์ง€ ํŒจํ„ด ํƒ์ƒ‰ ํ•„์š”

์‹ค๋ฌด ์ ์šฉ ํฌ์ธํŠธ

1. ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ ๋„์ž…

[!example] ์‹ค๋ฌด ์‹œ๋‚˜๋ฆฌ์˜ค
๊ธฐ์กด ๋ฌธ์ œ:
– AutoML์ด ๋งค๋ฒˆ ๋‹ค๋ฅธ ํ”ผ์ฒ˜๋ฅผ ์ƒ์„ฑํ•ด ์žฌํ•™์Šต ์‹œ ์ผ๊ด€์„ฑ ๋ถ€์กฑ
– ์ƒ์„ฑ๋œ ํ”ผ์ฒ˜๋ฅผ ์ดํ•ดํ•˜์ง€ ๋ชปํ•ด ๋””๋ฒ„๊น… ์–ด๋ ค์›€

์ ์šฉ ๋ฐฉ๋ฒ•:
– Constrained-Topology ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์ผ๊ด€๋œ ํ”ผ์ฒ˜ ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์ถ•
– Planning ๋‹จ๊ณ„์—์„œ ๋น„์ฆˆ๋‹ˆ์Šค ์ œ์•ฝ ์กฐ๊ฑด ๋ช…์‹œ
– Validation ๋‹จ๊ณ„์—์„œ ๋„๋ฉ”์ธ ๊ทœ์น™ ๊ฒ€์ฆ

2. ํŒ€ ์›Œํฌํ”Œ๋กœ์šฐ ํ†ตํ•ฉ

ํ†ตํ•ฉ ์ „๋žต:

# ์‹ค๋ฌด ์ ์šฉ ์˜ˆ์‹œ
class FeatureEngineeringPipeline:
    """
    ํŒ€์˜ ๊ธฐ์กด ML ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉ
    """
    def __init__(self, team_codebase, domain_rules):
        self.planning_agent = PlanningAgent(domain_rules)
        self.proposal_agent = ProposalAgent(team_codebase)
        self.validation_agent = ValidationAgent(domain_rules)
        self.integration_agent = IntegrationAgent(team_codebase)

    def generate_features(self, dataset, task):
        # ํŒ€์˜ ๊ธฐ์ค€์— ๋งž์ถ˜ ํ”ผ์ฒ˜ ์ƒ์„ฑ
        strategy = self.planning_agent.plan(dataset, task)
        proposals = self.proposal_agent.propose(strategy)
        validated = self.validation_agent.validate(proposals)
        features = self.integration_agent.integrate(validated)

        # ๋ฌธ์„œํ™” ๋ฐ ๋ฆฌ๋ทฐ๋ฅผ ์œ„ํ•œ ์ถœ๋ ฅ
        self.generate_documentation(features)

        return features

3. ์‹ ๋ขฐ์„ฑ ํ™•๋ณด

์‹ค๋ฌด ์ฒดํฌ๋ฆฌ์ŠคํŠธ:

  • [ ] Planning ๋‹จ๊ณ„์—์„œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชฉํ‘œ ๋ช…ํ™•ํžˆ ์ •์˜
  • [ ] Validation ๋‹จ๊ณ„์—์„œ ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€์˜ ๊ทœ์น™ ์ ์šฉ
  • [ ] ์ƒ์„ฑ๋œ ํ”ผ์ฒ˜์˜ ํ•ด์„ ๋ฌธ์„œ ์ž๋™ ์ƒ์„ฑ
  • [ ] A/B ํ…Œ์ŠคํŠธ๋กœ ๊ธฐ์กด ํ”ผ์ฒ˜ ๋Œ€๋น„ ์„ฑ๋Šฅ ๊ฒ€์ฆ
  • [ ] ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์œผ๋กœ ํ”„๋กœ๋•์…˜ ์„ฑ๋Šฅ ์ถ”์ 

4. ์ ์ง„์  ๋„์ž… ์ „๋žต

[!note] ๋‹จ๊ณ„๋ณ„ ๋„์ž…
Phase 1: ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ
– ์ž‘์€ ๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ๊ฒ€์ฆ
– ๊ธฐ์กด ์ˆ˜๋™ ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง๊ณผ ๋น„๊ต

Phase 2: ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ ‘๊ทผ
– ์ž๋™ ์ƒ์„ฑ + ์‚ฌ๋žŒ์˜ ๊ฒ€ํ† 
– ์ ์ง„์ ์œผ๋กœ ์ž๋™ํ™” ๋น„์œจ ์ฆ๊ฐ€

Phase 3: ์™„์ „ ์ž๋™ํ™”
– ๋ชจ๋‹ˆํ„ฐ๋ง ํ•˜์— ํ”„๋กœ๋•์…˜ ๋ฐฐํฌ
– ์ง€์†์ ์ธ ๊ฐœ์„  ๋ฐ ์ตœ์ ํ™”

5. ์ดํ•ด๊ด€๊ณ„์ž ์„ค๋“

์„ค๋“ ํฌ์ธํŠธ:

  1. ๊ฒฝ์˜์ง„:
    • ์ผ๊ด€์„ฑ ์žˆ๋Š” ํ”ผ์ฒ˜๋กœ ๋ชจ๋ธ ์„ฑ๋Šฅ ์•ˆ์ •ํ™”
    • ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธํ‹ฐ์ŠคํŠธ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ
  2. ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธํ‹ฐ์ŠคํŠธ:
    • ๋ฐ˜๋ณต ์ž‘์—… ์ž๋™ํ™”๋กœ ์ฐฝ์˜์  ์ž‘์—…์— ์ง‘์ค‘
    • ํ”ผ์ฒ˜ ์ƒ์„ฑ ์ด์œ ๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์–ด ๋””๋ฒ„๊น… ์šฉ์ด
  3. ML ์—”์ง€๋‹ˆ์–ด:
    • ํ”„๋กœ๋•์…˜ ๋ฐฐํฌ ์‹œ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๋™์ž‘
    • ๊ธฐ์กด ํŒŒ์ดํ”„๋ผ์ธ๊ณผ์˜ ๋งค๋„๋Ÿฌ์šด ํ†ตํ•ฉ

๊ด€๋ จ ๊ฐœ๋… ๋ฐ ๋…ธํŠธ

๊ด€๋ จ ๊ธฐ์ˆ 

  • AutoML ํ”„๋ ˆ์ž„์›Œํฌ: Auto-sklearn, H2O AutoML, TPOT
  • LLM ์ฝ”๋”ฉ ์—์ด์ „ํŠธ: GitHub Copilot, Devin, CodeLlama
  • Multi-Agent Systems: ReAct, AutoGPT, MetaGPT

References

  1. ์›๋…ผ๋ฌธ: Towards Reliable ML Feature Engineering via Planning in Constrained-Topology of LLM Agents
  2. PDF: arXiv PDF
  3. ๊ด€๋ จ ์—ฐ๊ตฌ:
    • AutoML ์‹œ์Šคํ…œ ์„ค๊ณ„
    • LLM Agent ์•„ํ‚คํ…์ฒ˜
    • Feature Engineering ๋ฐฉ๋ฒ•๋ก 

๋ฉ”๋ชจ ๋ฐ ์ธ์‚ฌ์ดํŠธ

[!tip] ๊ฐœ์ธ์  ์ธ์‚ฌ์ดํŠธ
– ์‹ค๋ฌด ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ: Planning ๋‹จ๊ณ„์—์„œ ๋„๋ฉ”์ธ ์ง€์‹์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ธ์ƒ์ 
– ์•„ํ‚คํ…์ฒ˜ ์„ค๊ณ„: ์ œํ•œ๋œ ํ† ํด๋กœ์ง€ ๊ฐœ๋…์€ ๋‹ค๋ฅธ Multi-Agent ์‹œ์Šคํ…œ์—๋„ ์ ์šฉ ๊ฐ€๋Šฅ
– ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ: ๋„๋ฉ”์ธ๋ณ„ ์ตœ์  ํ† ํด๋กœ์ง€ ํŒจํ„ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๊ตฌ์ถ• ํ•„์š”

[!example] ์ ์šฉ ์•„์ด๋””์–ด
– ํšŒ์‚ฌ์˜ ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ์— Validation Agent ์ถ”๊ฐ€ํ•˜์—ฌ ํ”ผ์ฒ˜ ํ’ˆ์งˆ ๊ด€๋ฆฌ
– Planning Agent์— ๋น„์ฆˆ๋‹ˆ์Šค ์ œ์•ฝ ์กฐ๊ฑด (๊ทœ์ œ, ์œค๋ฆฌ) ํ†ตํ•ฉ
– ๊ธฐ์กด ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง ์ฝ”๋“œ๋ฅผ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ

์ž‘์„ฑ์ž

skycave

Follow Me
๋‹ค๋ฅธ ๊ธฐ์‚ฌ
Previous

[AI Paper] Towards Efficient and Robust Linguistic Emotion Diagnosis for Mental Health via Multi-Agent Instruction Refinement

Next

[AI Paper] TransportAgents: a multi-agents LLM framework for traffic accident severity prediction

๋Œ“๊ธ€ ์—†์Œ! ์ฒซ ๋Œ“๊ธ€์„ ๋‚จ๊ฒจ๋ณด์„ธ์š”.

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ ์‘๋‹ต ์ทจ์†Œ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค

์ตœ์‹ ๊ธ€

  • ๐Ÿ“Š ์ผ์ผ ๋‰ด์Šค ๊ฐ์„ฑ ๋ฆฌํฌํŠธ – 2026-01-28
  • AI ์‹œ์Šคํ…œ์˜ ๋ฌธ๋งฅ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰(Contextual Retrieval) | Anthropic
  • “Think” ํˆด: Claude๊ฐ€ ๋ฉˆ์ถฐ์„œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ | Anthropic
  • Claude Code ๋ชจ๋ฒ” ์‚ฌ๋ก€ \ Anthropic
  • ์šฐ๋ฆฌ๊ฐ€ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ ๋ฐฉ๋ฒ•
Copyright 2026 — skycave's Blog. All rights reserved. Blogsy WordPress Theme