๋ณธ๋ฌธ์œผ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
-
skycave's Blog
skycave's Blog
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
  • Home
  • Investment
  • IT
    • Data engineering
    • AI
    • Programing
  • Leisure
    • Camping
    • Fishing
  • Travel
    • Domestic
    • Overseas
  • Book
  • Product
  • Hot keyword in google
๋‹ซ๊ธฐ

๊ฒ€์ƒ‰

AI

[AI Paper] ๐Ÿ“„ How to Build AI Agents by Augmenting LLMs with Codified Human Expert Domain Knowledge?

By skycave
2026๋…„ 01์›” 25์ผ 11 Min Read
0

๐Ÿ“„ How to Build AI Agents by Augmenting LLMs with Codified Human Expert Domain Knowledge?

๋…ผ๋ฌธ ์ •๋ณด
– ์ œ๋ชฉ: How to Build AI Agents by Augmenting LLMs with Codified Human Expert Domain Knowledge? A Software Engineering Framework
– ์ €์ž: Choro Ulan uulu, Mikhail Kulyabin, Iris Fuhrmann, Jan Joosten, Nuno Miguel Martins Pacheco, Filippos Petridis, Rebecca Johnson, Jan Bosch, Helena Holmstrรถm Olsson
– ๋ฐœํ–‰์ผ: 2026๋…„ 1์›” 21์ผ
– ์ถœ์ฒ˜: 5th International Conference on AI Engineering โ€“ Software Engineering for AI (Rio de Janeiro)
– arXiv ID: 2601.15153v1
– ๋งํฌ: arXiv | PDF


๐Ÿ“Œ 1๋‹จ๊ณ„: ๊ธฐ๋ณธ ์ •๋ณด

์ œ๋ชฉ

How to Build AI Agents by Augmenting LLMs with Codified Human Expert Domain Knowledge? A Software Engineering Framework

์ €์ž

  • Choro Ulan uulu (Siemens AG)
  • Mikhail Kulyabin, Iris Fuhrmann, Jan Joosten, Nuno Miguel Martins Pacheco, Filippos Petridis, Rebecca Johnson (Siemens AG)
  • Jan Bosch (Chalmers University of Technology, Eindhoven University of Technology)
  • Helena Holmstrรถm Olsson (Malmรถ University)

์ถœํŒ์ •๋ณด

  • arXiv ID: 2601.15153v1
  • ๋ฐœํ–‰์ผ: 2026๋…„ 1์›” 21์ผ
  • ํ•™ํšŒ: 5th International Conference on AI Engineering โ€“ Software Engineering for AI
  • ์žฅ์†Œ: Rio de Janeiro, April 15โ€“17, 2026

๋ถ„์•ผ/์นดํ…Œ๊ณ ๋ฆฌ

  • Computer Science > Artificial Intelligence (cs.AI)
  • Software Engineering for AI

๐Ÿ“Œ 2๋‹จ๊ณ„: ์—ฐ๊ตฌ ๋‚ด์šฉ

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์˜์‹

ํ•ต์‹ฌ ๋ฌธ์ œ: ์ „๋ฌธ๊ฐ€ ๋ณ‘๋ชฉ ํ˜„์ƒ (Expert Bottleneck)

์กฐ์ง ์ „๋ฐ˜์—์„œ ํ•ต์‹ฌ ๋„๋ฉ”์ธ ์ง€์‹์ด ์†Œ์ˆ˜ ์ „๋ฌธ๊ฐ€์—๊ฒŒ ์ง‘์ค‘๋˜์–ด ์žˆ์–ด, ํ™•์žฅ์„ฑ๊ณผ ์˜์‚ฌ๊ฒฐ์ • ํ’ˆ์งˆ์— ๋ณ‘๋ชฉ์ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.

[!important] ์‹œ๊ฐํ™” ๋ถ„์•ผ์˜ ํŠน์ • ๋ฌธ์ œ
– ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ํšจ๊ณผ์ ์ธ ์‹œ๊ฐํ™”๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ค์›€
– ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•œ ์‹œ๊ฐํ™” ๊ธฐ๋ฒ• ์„ ํƒ์ด ์–ด๋ ค์›€
– ์ •๊ตํ•œ ์‹œ๊ฐํ™” ์‹œ๋„ ํ›„์—๋„ ์ „๋ฌธ๊ฐ€ ํ•ด์„์ด ํ•„์š”
– ์ „๋ฌธ๊ฐ€๋Š” ๋ฉ˜ํ† ๋ง๊ณผ ๋ณธ์—ฐ์˜ ์—…๋ฌด ์‚ฌ์ด์—์„œ ๊ท ํ˜• ์œ ์ง€ ์–ด๋ ค์›€

์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”์—์„œ์˜ ๋ฌธ์ œ ์‹ฌํ™”

์—”์ง€๋‹ˆ์–ด๋ง ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์•ผ์—์„œ๋Š” ์ด์ค‘ ์ „๋ฌธ์„ฑ ํ•„์š”:
– ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„ ์ „๋ฌธ์„ฑ
– ๋ฐ์ดํ„ฐ ๋ถ„์„/์‹œ๊ฐํ™” ์ „๋ฌธ์„ฑ

์ด ๋‘ ๊ฐ€์ง€๊ฐ€ ๊ฒฐํ•ฉ๋˜์ง€ ์•Š์œผ๋ฉด:
– ์‚ฌ์šฉ์ž๊ฐ€ ๊ธฐ๋Šฅ์„ ๊ณผ์†Œ ํ™œ์šฉ
– ์ฃผ์š” ํŠธ๋ ˆ์ด๋“œ์˜คํ”„๋ฅผ ๋…ธ์ถœํ•˜๋Š” ๊ธฐํšŒ ๋†“์นจ
– ์ „๋ฌธ๊ฐ€๊ฐ€ ๋ฐ˜๋ณต์ ์ธ ๊ฒ€์ฆ ์ž‘์—…์— ์‹œ๊ฐ„ ์†Œ๋ชจ

์‚ฌ๋ก€: Simulation Analysis Software

Siemens์˜ Simulation Analysis Software (์„ค๊ณ„ ๊ณต๊ฐ„ ํƒ์ƒ‰ ํ”Œ๋žซํผ):
– ๋ณต์žกํ•œ ์‹œ๊ฐํ™” ๊ธฐ๋Šฅ ํฌํ•จ
– ์‚ฌ์šฉ์ž๊ฐ€ ์ ์ ˆํ•œ ์‹œ๊ฐํ™” ์œ ํ˜• ์‹๋ณ„์— ์—ฌ๋Ÿฌ ๋ฒˆ ์‹œ๋„ ํ•„์š”
– ์‹œํ–‰์ฐฉ์˜ค ๋ฐฉ์‹์€ ์‹œ๊ฐ„ ์†Œ๋ชจ์ ์ด๋ฉฐ ๊ธฐ๋Šฅ ํƒ์ƒ‰ discouraged


2. ์—ฐ๊ตฌ ๋ชฉ์  ๋ฐ ์—ฐ๊ตฌ ์งˆ๋ฌธ

ํ•ต์‹ฌ ์—ฐ๊ตฌ ์งˆ๋ฌธ (RQ)

RQ: ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ๋„๋ฉ”์ธ ์ง€์‹์„ ์–ด๋–ป๊ฒŒ ํฌ์ฐฉํ•˜๊ณ  ์ฝ”๋””ํŒŒ์ดํ•˜์—ฌ, ์ž์œจ์ ์ธ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜๋Š” LLM ๊ธฐ๋ฐ˜ AI ์—์ด์ „ํŠธ๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€?

์—ฐ๊ตฌ ๋ชฉํ‘œ

  1. ์ „๋ฌธ๊ฐ€ ๋ณ‘๋ชฉ ์™„ํ™”: ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ์‹œ๊ฐํ™” ์ƒ์„ฑ ๊ฐ€๋Šฅ
  2. ์ง€์‹ ์ฝ”๋””ํ”ผ์ผ€์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ: ์‹œ์Šคํ…œ์ ์ธ ์ง€์‹ ์บก์ฒ˜ ๋ฐ ์ฝ”๋””ํ”ผ์ผ€์ด์…˜ ๋ฐฉ๋ฒ• ์ œ์•ˆ
  3. ์‹ค์ฆ ๊ฒ€์ฆ: ์‚ฐ์—… ํ™˜๊ฒฝ์—์„œ์˜ ํšจ๊ณผ์„ฑ ์ž…์ฆ

๊ธฐ์—ฌ์ 

  1. ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ง ํ”„๋ ˆ์ž„์›Œํฌ
    • ์ „๋ฌธ๊ฐ€ ์ง€์‹ ํฌ์ฐฉ ๋ฐ ์ฝ”๋””ํ”ผ์ผ€์ด์…˜ ์‹œ์Šคํ…œ
    • ๋ณด์™„์  ์ „๋žต: ์š”์ฒญ ๋ถ„๋ฅ˜๊ธฐ, RAG, ์ฝ”๋””ํŒŒ์ด๋“œ ๊ทœ์น™, ์‹œ๊ฐํ™” ์›์น™
  2. ์‹ค์ฆ์  ์ฆ๊ฑฐ
    • 12๋ช… ํ‰๊ฐ€์ž, 5๊ฐœ ์‹œ๋‚˜๋ฆฌ์˜ค, 3๊ฐœ ๊ณตํ•™ ๋„๋ฉ”์ธ
    • ์ถœ๋ ฅ ํ’ˆ์งˆ 206% ๊ฐœ์„  (ํ‰๊ท  2.60 vs 0.85)
    • ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ๋“ฑ๊ธ‰ ์ง€์† ๋‹ฌ์„ฑ (Mode=3)
  3. ์ง€์‹ ๋ฏผ์ฃผํ™”
    • ๋น„์ „๋ฌธ๊ฐ€์˜ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ๊ฒฐ๊ณผ ๋‹ฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ ์ž…์ฆ

3. ์ด๋ก ์  ํ”„๋ ˆ์ž„์›Œํฌ

AI ์—์ด์ „ํŠธ ์ •์˜ (Deng et al., 2024)

AI ์—์ด์ „ํŠธ๋Š” 4๊ฐ€์ง€ ํ•ต์‹ฌ ์†์„ฑ์„ ๊ฐ€์ง„ ์‹œ์Šคํ…œ:

์†์„ฑ ์„ค๋ช… ๊ตฌํ˜„ ๋ฐฉ์‹
Autonomy ํ”„๋กฌํ”„ํŠธ ํ›„ ๋…๋ฆฝ์  ์ž‘๋™ ๋ถ„๋ฅ˜๊ธฐ ๊ธฐ๋ฐ˜ ๋ผ์šฐํŒ…
Reactivity ์‚ฌ์šฉ์ž ์š”์ฒญ์— ์‘๋‹ต ์‚ฌ์šฉ์ž ์ž…๋ ฅ ์ฒ˜๋ฆฌ
Proactivity ์ „๋ฌธ๊ฐ€ ๊ทœ์น™ ์ ์šฉ ์ž์œจ ๊ทœ์น™ ์‹คํ–‰
Social Ability ์ž์—ฐ์–ด ์ƒํ˜ธ์ž‘์šฉ LLM ๋Œ€ํ™” ๊ธฐ๋Šฅ

์ง€์‹ ์ฝ”๋””ํ”ผ์ผ€์ด์…˜ ์ ‘๊ทผ๋ฒ•

์ „๋ฌธ๊ฐ€ ์ง€์‹์˜ ๋‘ ๊ฐ€์ง€ ํ˜•ํƒœ ๊ตฌ๋ถ„:

์ง€์‹ ์œ ํ˜• ํŠน์ง• ๊ตฌํ˜„ ๋ฐฉ์‹
๋ช…์‹œ์  ์ ˆ์ฐจ์  ๊ทœ์น™ (Explicit Procedural Rules) ๋ช…ํ™•ํ•œ if-then ๋กœ์ง Python ํ•จ์ˆ˜๋กœ ์ง์ ‘ ๋ณ€ํ™˜
์•”๋ฌต์  ์„ค๊ณ„ ์›์น™ (Tacit Design Principles) ๋ฌธ๋งฅ ์˜์กด์ , ํŒ๋‹จ ๊ธฐ๋ฐ˜ LLM ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๋˜๋Š” ๊ฒ€์ƒ‰ ๊ธฐ๋ฐ˜ ํ†ตํ•ฉ

[!note] ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์˜ ํ•„์š”์„ฑ
– ์ฝ”๋“œ๋งŒ์œผ๋กœ๋Š” ๋ถ„์„์  ํ†ต์ฐฐ ๋ถ€์กฑ
– LLM๋งŒ์œผ๋กœ๋Š” ๋„๋ฉ”์ธ ๋ถ€์ ์ ˆํ•œ ์ถœ๋ ฅ
โ†’ ํ†ตํ•ฉ๋œ ์ ‘๊ทผ๋ฒ• ํ•„์š”


4. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก 

4๋‹จ๊ณ„ ์—ฐ๊ตฌ ํ”„๋กœ์„ธ์Šค

graph LR
    A[Step 1: ์ „๋ฌธ๊ฐ€ ์ง€์‹ ์ถ”์ถœ] --> B[Step 2: ํ”„๋ ˆ์ž„์›Œํฌ ๊ฐœ๋ฐœ]
    B --> C[Step 3: ์‹œ์Šคํ…œ ๊ตฌํ˜„]
    C --> D[Step 4: ์ข…ํ•ฉ ๊ฒ€์ฆ]

Step 1: Expert Knowledge Extraction

๋Œ€์ƒ ์ „๋ฌธ๊ฐ€:
1. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„ ์†Œํ”„ํŠธ์›จ์–ด ์ „๋ฌธ๊ฐ€
2. ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์ „๋ฌธ๊ฐ€

์ธํ„ฐ๋ทฐ ์„ค๊ณ„:
– ์ฃผ์ œ 1: ํ˜„์žฌ ์‹œ๊ฐํ™” ์›Œํฌํ”Œ๋กœ์šฐ ๋ฐ pain points
– ์ฃผ์ œ 2: ์‹œ๊ฐํ™” ์ƒ์„ฑ ์‹œ ์ „๋ฌธ๊ฐ€ ์˜์‚ฌ๊ฒฐ์ • ํ”„๋กœ์„ธ์Šค
– ์ฃผ์ œ 3: ์‹ค์ œ ์‚ฌ์šฉ๋˜๋Š” ๊ทœ์น™๊ณผ ํœด๋ฆฌ์Šคํ‹ฑ

๊ทœ์น™ ์ถ”์ถœ ๋ฐฉ๋ฒ•:
– ๊ฐœ๋ฐฉํ˜• ์งˆ๋ฌธ + ์‹œ๋‚˜๋ฆฌ์˜ค ๊ธฐ๋ฐ˜ ํ† ๋ก 
– ์ „๋ฌธ๊ฐ€๊ฐ€ ์ง์ ‘ ๋ช…์‹œ์  ๊ทœ์น™ ์ œ๊ณต
– ํ•ด์„์  ๋ถ„์„ ์—†์ด ์ฆ‰์‹œ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ ์บก์ฒ˜

์ „๋ฌธ๊ฐ€ ์ˆ˜์˜ ์ ์ ˆ์„ฑ:
– ๋‘ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ „๋ฌธ ๋„๋ฉ”์ธ ์ปค๋ฒ„
– ํ†ต๊ณ„์  ์ผ๋ฐ˜ํ™” ๋ชฉ์ ์ด ์•„๋‹Œ ์ฒด๊ณ„์  ์ง€์‹ ์ถ”์ถœ
– ๊ธฐ์ˆ ์  ์„ฑ๋Šฅ ์ง€ํ‘œ ๊ธฐ๋ฐ˜ ๊ฒ€์ฆ
– ํšŒ์‚ฌ ๋‚ด๋ถ€ ๋ฐ์ดํ„ฐ, ๋ฌธ์„œ, ํ† ๋ก  ๋ณด์™„

Step 2: Framework Development

  • ์ „๋ฌธ๊ฐ€ ํ†ต์ฐฐ์—์„œ ๊ณตํ†ต ํŒจํ„ด ์‹๋ณ„
  • ์ง€์‹์„ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•œ ์ปดํฌ๋„ŒํŠธ๋กœ ๊ตฌ์กฐํ™”
  • ํŠน์ • ์‚ฌ๋ก€ ๋„๋ฉ”์ธ ์™ธ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ผ๋ฐ˜ํ™”๋œ ํ”„๋ ˆ์ž„์›Œํฌ ์„ค๊ณ„

Step 3: System Implementation

  • Python ์ฝ”๋“œ ์ž๋™ ์ƒ์„ฑ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ
  • ์ถ”์ถœ๋œ ์ „๋ฌธ๊ฐ€ ์ง€์‹ ํ†ตํ•ฉ:
    • RAG ์‹œ์Šคํ…œ (๋„๋ฉ”์ธ๋ณ„ ์ฝ”๋“œ ์ƒ์„ฑ)
    • ์ฝ”๋””ํŒŒ์ด๋“œ ์ „๋ฌธ๊ฐ€ ๊ทœ์น™ (์‹คํ–‰ ๊ฐ€๋Šฅ ์ปดํฌ๋„ŒํŠธ)
    • ์‹œ๊ฐํ™” ๊ฐ€์ด๋“œ๋ผ์ธ (์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ)
    • ์ง€๋Šฅํ˜• ๋ถ„๋ฅ˜๊ธฐ

Step 4: Comprehensive Validation

๊ฒ€์ฆ ๊ตฌ์„ฑ ์š”์†Œ:

  1. ์ตœ์ข… ์‹œ๊ฐํ™” ํ’ˆ์งˆ ํ‰๊ฐ€
    • ๋น„์ „๋ฌธ๊ฐ€ ์‚ฌ์šฉ์ž: ๊ธฐ๊ณ„ ์—”์ง€๋‹ˆ์–ด (1๋…„ ๊ฒฝํ—˜)
    • ํ‰๊ฐ€์ž: ์‹œ๊ฐํ™” ์ „๋ฌธ๊ฐ€ (20๋…„ ๊ฒฝํ—˜)
    • ํ‰๊ฐ€ ํ•ญ๋ชฉ: ๋ถ„์„์  ํ†ต์ฐฐ, ์‹œ๊ฐ์  ํšจ๊ณผ์„ฑ
  2. ์ƒ์„ฑ ์ฝ”๋“œ ํ’ˆ์งˆ ํ‰๊ฐ€
    • ์ œ์•ˆ ์‹œ์Šคํ…œ vs ๊ธฐ์ค€ ์‹œ์Šคํ…œ (LLM+RAG)
    • ํ‰๊ฐ€์ž 12๋ช…: ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€, ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ง ์ „๋ฌธ๊ฐ€, AI ํ‰๊ฐ€์ž (Claude 4.5)
    • ํ‰๊ฐ€ ์ฐจ์›: ์œ ํšจ์„ฑ, ์ •ํ™•์„ฑ, ์ถœ๋ ฅ ํ’ˆ์งˆ

5. ์ฃผ์š” ๊ฒฐ๊ณผ

AI ์—์ด์ „ํŠธ ์•„ํ‚คํ…์ฒ˜

[!info] ์‹œ์Šคํ…œ ๊ตฌ์„ฑ ์š”์†Œ
1. ์š”์ฒญ ๋ถ„๋ฅ˜๊ธฐ: ์‚ฌ์šฉ์ž ์š”์ฒญ์„ ์นดํ…Œ๊ณ ๋ฆฌํ™”ํ•˜๊ณ  ์ ์ ˆํ•œ ์ฒ˜๋ฆฌ ์Šคํฌ๋ฆฝํŠธ ํ˜ธ์ถœ
2. RAG ์‹œ์Šคํ…œ: ๋„๋ฉ”์ธ๋ณ„ ์ฝ”๋“œ ์˜ˆ์ œ, ๊ธฐ์ˆ  ๋งค๋‰ด์–ผ ํฌํ•จ
3. ์ฝ”๋””ํŒŒ์ด๋“œ ์ „๋ฌธ๊ฐ€ ๊ทœ์น™: ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ Python ํ•จ์ˆ˜
4. ์‹œ๊ฐํ™” ๊ฐ€์ด๋“œ๋ผ์ธ: LLM ํ”„๋กฌํ”„ํŠธ์— ์ž„๋ฒ ๋“œ๋œ ์ „๋ฌธ๊ฐ€ ์›์น™
5. ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ๊ธฐ: ์‚ฌ์šฉ์ž ์š”๊ตฌ์‚ฌํ•ญ, ๋„๋ฉ”์ธ ์ง€์‹, ์‹œ๊ฐํ™” ์›์น™ ํ†ตํ•ฉ

์‹œ๋‚˜๋ฆฌ์˜ค 1: ์ˆ˜๋ ด์„ฑ ์‹œ๊ฐํ™” (History Plot)

๋ชฉํ‘œ: ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชฉ์  ํ•จ์ˆ˜์˜ ์ˆ˜๋ ด ์—ฌ๋ถ€ ์‹œ๊ฐํ™”

์‚ฌ์šฉ์ž ์ž…๋ ฅ: “Please generate a history plot to check convergence.”

์‹œ์Šคํ…œ ๊ฒฐ๊ณผ
๊ธฐ์ค€ ์‹œ์Šคํ…œ (LLM+RAG) ์œ ์šฉํ•œ ์ •๋ณด ์—†์Œ (Figure 3)
์ธ๊ฐ„ ๊ฒฐ๊ณผ ์ˆ˜๋ ด/๋น„์ˆ˜๋ ด ๋™์ผํ•œ ์‹ค์„ ์œผ๋กœ ํ‘œํ˜„ โ†’ ์ˆ˜๋ ด ์ƒํƒœ ์ „๋‹ฌ ์‹คํŒจ (Figure 4)
์ œ์•ˆ ์‹œ์Šคํ…œ ์ „๋ฌธ๊ฐ€ ๊ทœ์น™ ์ ์šฉ: ๋น„์ˆ˜๋ ด์€ ์ ์„ , ์ˆ˜๋ ด์€ ์‹ค์„  โ†’ ์ƒํƒœ ์ฆ‰์‹œ ์ „๋‹ฌ (Figure 5)

[!tip] ์ „๋ฌธ๊ฐ€ ๊ทœ์น™ ์˜ˆ์‹œ (์ˆ˜๋ ด์„ฑ ํ‰๊ฐ€)
– ๋ถ„์„ ์‹œ์ž‘ ์ „ ๊ธฐ๋ณธ ์งˆ๋ฌธ: ๋ชฉ์ ์ด ์ˆ˜๋ ดํ–ˆ๋Š”๊ฐ€?
– ์ˆ˜๋ ด ๊ฒ€์ฆ ํ•„์š” ์ด์œ :
– ์ตœ์ ํ™” ๊ฒฐ๊ณผ ์‹ ๋ขฐ์„ฑ ๊ฒ€์ฆ
– ์ถ”๊ฐ€ ๋ฐ˜๋ณต ํ•„์š” ์—ฌ๋ถ€ ๊ฒฐ์ •
– ํ›„์† ๋ถ„์„ ๋‹จ๊ณ„์— ๋Œ€ํ•œ ํ™•์‹  ์ œ๊ณต

์‹œ๋‚˜๋ฆฌ์˜ค 2: 2D ๊ด€๊ณ„ ํ”Œ๋กฏ (2D Relation Plot)

๋ชฉํ‘œ: “์ด ์งˆ๋Ÿ‰”๊ณผ “1์ฐจ ๋น„ํ‹€๋ฆผ ์ฃผํŒŒ์ˆ˜” ๊ฐ„ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„ ์ดํ•ด

์‚ฌ์šฉ์ž ์ž…๋ ฅ: “please generate python code for 2d relation plot with variables total mass, first torsional frequency and total cost”

์‹œ์Šคํ…œ ๊ฒฐ๊ณผ
์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€ ์žฌ๋ฃŒ ์œ ํ˜• ์ƒ‰์ƒ ํ‘œํ˜„, ๋น„์šฉ ํšจ์œจ์ ์ธ ์ฒ ๊ฐ• ์˜ต์…˜(ํŒŒ๋ž€ ์ ) ๊ฐ•์กฐ (Figure 6)
๊ธฐ์ค€ ์‹œ์Šคํ…œ ๊ธฐ์ˆ ์ ์œผ๋กœ ์ •ํ™•ํ•˜์ง€๋งŒ ๋น„์ •๋ณด์ : ์ƒ‰์ƒ ๋ฏธํ™œ์šฉ, ๋น„๊ต ๋ถˆ๊ฐ€๋Šฅํ•œ ๋ณ€์ˆ˜ ๋™์ผ ์ถ•, ๋น„์šฉ ํšจ์œจ์  ์ด์ƒ์  ๋ฏธ๊ฐ•์กฐ (Figure 7)
์ œ์•ˆ ์‹œ์Šคํ…œ ์ตœ์  ์†”๋ฃจ์…˜ ๊ฐ•์กฐ, ๊ฐ€๋…์„ฑ ๊ฐœ์„ . ์ „๋ฌธ๊ฐ€๋งŒํผ์˜ ๋””์ž์ธ ์„ธํŠธ ์„ ํƒ ํ†ต์ฐฐ๋ ฅ์€ ๋ถ€์กฑํ•˜์ง€๋งŒ ๊ธฐ์ค€์„ ๋ณด๋‹ค ๊ฐœ์„  (Figure 8)

์‹œ๋‚˜๋ฆฌ์˜ค 3: ๋ณ‘๋ ฌ ํ”Œ๋กฏ (Parallel Plot)

๋ชฉํ‘œ: ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ตœ์  ์„ค๊ณ„์™€ ์ด์ƒ๊ฐ’ ๊ตฌ๋ถ„

์‚ฌ์šฉ์ž ์ž…๋ ฅ: “Please generate a parallel plot.”

์‹œ์Šคํ…œ ๊ฒฐ๊ณผ
์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€ ์ด์ƒ๊ฐ’์ด ์•Œ๋ฃจ๋ฏธ๋Š„ ์‚ฌ์šฉ, ๋ฐฐํ„ฐ๋ฆฌ ์ ‘์ฐฉ์ œ ์—†์Œ ํšจ๊ณผ์ ์œผ๋กœ ๋“œ๋Ÿฌ๋ƒ„. ๋ฒ”์œ„ ๋ณ€์ˆ˜์™€ ๋ฒ”์ฃผํ˜• ๋ณ€์ˆ˜ ๊ทธ๋ฃนํ™”๋กœ ๊ฐ€๋…์„ฑ ๊ฐ์†Œ (Figure 9)
๊ธฐ์ค€ ์‹œ์Šคํ…œ ๋ชจ๋“  ๋ณ€์ˆ˜ ๋ฌด์ฐจ๋ณ„ ํฌํ•จ, ์ตœ์  ์„ค๊ณ„์™€ ์ด์ƒ๊ฐ’ ๊ฐ•์กฐ ์—†์Œ, ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ํ†ต์ฐฐ ์ถ”์ถœ ์–ด๋ ค์›€ (Figure 10)
์ œ์•ˆ ์‹œ์Šคํ…œ ์ตœ์  ์„ค๊ณ„ ๊ฐ•์กฐ, ๊ฐœ์„ ๋œ ๋ฒ”๋ก€, ๋” ๋‚˜์€ ์‹œ๊ฐ์  ๊ณ„์ธต๊ตฌ์กฐ๋กœ ๊ฐ€๋…์„ฑ ๊ฐœ์„ . ์ด์ƒ๊ฐ’ ๊ฐ์ง€ ๋Šฅ๋ ฅ ๋ฏธ๋ณด์œ  (๋ฏธ๋ž˜ ๊ฐœ๋ฐœ ํ•„์š”) (Figure 11)

์ •๋Ÿ‰์  ํ‰๊ฐ€ ๊ฒฐ๊ณผ

ํ‰๊ฐ€ ๊ตฌ์กฐ:
– ๋Œ€์ƒ ์‹œ์Šคํ…œ: ์ œ์•ˆ ์‹œ์Šคํ…œ (AI Agent) vs ๊ธฐ์ค€ ์‹œ์Šคํ…œ (LLM+RAG)
– ํ‰๊ฐ€์ž: 12๋ช… (๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ์  ๋ฐฐ๊ฒฝ)
– ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ „๋ฌธ๊ฐ€ (20๋…„ CAE ๊ฒฝํ—˜)
– ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ตœ์ ํ™” ์ „๋ฌธ๊ฐ€
– ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ง ๋งค๋‹ˆ์ € (12๋…„)
– AI ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ง ์ „๋ฌธ๊ฐ€ 2๋ช…
– ์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™ ๋ฐ•์‚ฌ
– ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธํ‹ฐ์ŠคํŠธ (4๋…„)
– ์ „๊ธฐ ์—”์ง€๋‹ˆ์–ด (2๋…„ CAD ์„ค๊ณ„)
– ์ปดํ“จํ„ฐ ์‚ฌ์ด์–ธํ‹ฐ์ŠคํŠธ (6๋…„ ์ฝ”๋”ฉ)
– ๋น„์ฆˆ๋‹ˆ์Šค ์ด์ฝ”๋…ธ๋ฏธ์ŠคํŠธ (1๋…„ Python)
– ๊ธฐ๊ณ„ ์—”์ง€๋‹ˆ์–ด (๋กœ๋ด‡์Šค, 4๋…„ ์ฝ”๋”ฉ)
– ์ „๊ธฐ ์—”์ง€๋‹ˆ์–ด (1.5๋…„ LLM ๊ฐœ๋ฐœ)

ํ‰๊ฐ€ ์ง€ํ‘œ:

์ง€ํ‘œ ์„ค๋ช… ์ฑ„์  ๋ฐฉ์‹
Code Validity ๋ฌธ๋ฒ•์  ์ •ํ™•์„ฑ, ๋Ÿฐํƒ€์ž„ ์˜ค๋ฅ˜ ์—†์Œ ์ด์ง„ ์ฑ„์  (0=๋ฌดํšจ, 1=์œ ํšจ)
Code Correctness ์˜๋„ํ•œ ๋Œ€๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” ์ •๋„ 4์ฐจ์› ์ด์ง„ ์ฑ„์ 
– Code Efficiency ์ตœ์ ํ™” ์ˆ˜์ค€
– Documentation Quality ์ฃผ์„, ๋ฌธ์„œํ™” ์ ์ ˆ์„ฑ
– Exception Handling ์—๋Ÿฌ ์ฒ˜๋ฆฌ ๊ตฌํ˜„
– Code Cleanliness ๋ฏธ์‚ฌ์šฉ ๋ณ€์ˆ˜, ์ค‘๋ณต ์š”์†Œ ์—†์Œ
Output Quality ์‹œ๊ฐํ™” ํšจ๊ณผ์„ฑ ์ ์ ˆํ•œ ์ฐจ์›, ์‹œ๊ฐ์  ์ธ์ฝ”๋”ฉ, ์ค‘์š” ์ •๋ณด ๊ฐ•์กฐ

๊ฒฐ๊ณผ ์š”์•ฝ:

ํ‰๊ฐ€ ํ•ญ๋ชฉ ์ œ์•ˆ ์‹œ์Šคํ…œ ๊ธฐ์ค€ ์‹œ์Šคํ…œ ๊ฐœ์„ ๋ฅ 
์ถœ๋ ฅ ํ’ˆ์งˆ 2.60/3.00 0.85/3.00 206%
์ฝ”๋“œ ํ’ˆ์งˆ ํ‘œ์ค€ํŽธ์ฐจ 0.29-0.58 0.39-1.11 ๋” ๋‚ฎ์€ ๋ถ„์‚ฐ
์ตœ๊ณ  ๋“ฑ๊ธ‰ (Mode=3) 5/5 ์‹œ๋‚˜๋ฆฌ์˜ค 0/5 ์‹œ๋‚˜๋ฆฌ์˜ค ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€

๋„๋ฉ”์ธ๋ณ„ ๊ฒ€์ฆ:

๋„๋ฉ”์ธ ์‹œ๋‚˜๋ฆฌ์˜ค ๋ฌผ๋ฆฌ์  ํ˜„์ƒ
์ „๊ธฐํ™”ํ•™ ์ž๋™์ฐจ ๋ฐฐํ„ฐ๋ฆฌ ์„ค๊ณ„ (Scripts 1-2) ์ „๊ธฐํ™”ํ•™์  ์ตœ์ ํ™”
์ „์ž๊ธฐํ•™ ์ „๊ธฐ ๋ชจํ„ฐ ์ตœ์ ํ™” (Script 4) ์ „์ž๊ธฐํ•™์  ๋ชจํ„ฐ ์„ค๊ณ„
๊ธฐ๊ณ„๊ณตํ•™ ๊ตฌ์กฐ ์ œ์–ด์•” ๋ถ„์„ (Script 5) ๊ธฐ๊ณ„์  ๊ตฌ์กฐ ์‘๋ ฅ ๋ถ„์„

[!success] ํ•ต์‹ฌ ๋ฐœ๊ฒฌ
– ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ (Physics-agnostic) ๊ทœ์น™์ด ์„œ๋กœ ๋‹ค๋ฅธ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ ์˜์—ญ์—์„œ ์œ ํšจํ•จ์„ ๊ฒ€์ฆ
– Claude 4.5 Sonnet์ด ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์™€ ์ผ์น˜๋œ ํ‰๊ฐ€๋ฅผ ์ œ๊ณตํ•˜์—ฌ ํ‰๊ฐ€ ํŽธํ–ฅ ๊ฐ์†Œ


6. ๋…ผ์˜ ๋ฐ ํ•ด์„

์‹œ๊ฐํ™” ์ „๋ฌธ๊ฐ€ ๊ทœ์น™

History Plot ์š”๊ตฌ์‚ฌํ•ญ:
– ํ•ญ์ƒ ์ตœ์ ์˜ ์„ค๊ณ„๋ฅผ ๋ ˆํผ๋Ÿฐ์Šค๋กœ ํ‘œ์‹œ
– ์ตœ๋Œ€ 2๊ฐœ์˜ ๋ณ€์ˆ˜, ๋ชฉ์ ํ•จ์ˆ˜, ์‘๋‹ต ํ‘œ์‹œ (๊ฐ€๋…์„ฑ)
– ์‹œ๊ฐ์  ์ธ์ฝ”๋”ฉ์œผ๋กœ ์ˆ˜๋ ด ์ƒํƒœ ์ „๋‹ฌ:
– ๋น„์ˆ˜๋ ด: ์ ์„  (dashed lines)
– ์ˆ˜๋ ด: ์‹ค์„  (solid lines)
– ๊ด€๋ จ ๋ชฉ์ ํ•จ์ˆ˜๋Š” ๋™์ผ ํ”Œ๋กฏ์— ๊ทธ๋ฃนํ™”
– ๋ช…ํ™•ํ•œ ์‹œ๊ฐ์  ๊ณ„์ธต๊ตฌ์กฐ (์ฃผ์š”/๋ถ€์ฐจ์  ๋ชฉ์ ํ•จ์ˆ˜)
– ์žฅ์‹์  ์Šคํƒ€์ผ๋ง๋ณด๋‹ค ๊ฐ€๋…์„ฑ ์šฐ์„ 

์ผ๋ฐ˜ ์‹œ๊ฐํ™” ์›์น™:
1. ์‹œ๊ฐ์  ์ธ์ฝ”๋”ฉ์œผ๋กœ ์ˆ˜๋ ด ์ƒํƒœ ๋ช…ํ™•ํžˆ ์ „๋‹ฌ
2. ๊ฐ€๋…์„ฑ ์œ ์ง€, ๋ถˆํ•„์š”ํ•œ ์Šคํƒ€์ผ๋ง ํšŒํ”ผ
3. ์ „๋ฌธ๊ฐ€ ๊ฐ€์ด๋“œ ์—†์ด๋„ ์ถฉ๋ถ„ํ•œ ๋งฅ๋ฝ ์ œ๊ณต
4. ๋‹ค๋ฅธ ํ”Œ๋กฏ ์œ ํ˜• ๊ฐ„ ์ผ๊ด€๋œ ์Šคํƒ€์ผ๋ง ํŒจํ„ด

[!note] Lin and Thornton (2021) ์—ฐ๊ตฌ ์ง€์ง€
– ์•„๋ฆ„๋‹ค์šด ์‹œ๊ฐํ™”๋Š” ์‹ ๋ขฐ๋„ ์ฆ๊ฐ€๋ฅผ ๋‚˜ํƒ€๋ƒ„
– ๊ธฐ์ˆ ์  ์ •ํ™•์„ฑ๋งŒ์œผ๋กœ ๋ถˆ์ถฉ๋ถ„, ์‹œ๊ฐ์  ๋””์ž์ธ ์›์น™ ํ•„์š”

์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ง ํ”„๋ ˆ์ž„์›Œํฌ

ํ”„๋ ˆ์ž„์›Œํฌ ๋ชฉ์ :

๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”์˜ ์ „๋ฌธ๊ฐ€ ๋ณ‘๋ชฉ์€ ์กฐ์ง์  ๊ณผ์ œ์˜ ํ™•์žฅ:
– ํ•ต์‹ฌ ๋„๋ฉ”์ธ ์ง€์‹์ด ์†Œ์ˆ˜ ์ „๋ฌธ๊ฐ€์—๊ฒŒ ์ง‘์ค‘
– ์•”๋ฌต์  ์ง€์‹ (Tacit knowledge)์ด AI ์‹œ์Šคํ…œ์— ํ†ตํ•ฉ ํ•„์š”

์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œ ํ•ด๊ฒฐ:

  1. ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ „๋ฌธ๊ฐ€ ์ง€์‹ ์บก์ฒ˜
    • ๋ช…์‹œ์  ๊ทœ์น™ (Explicit rules)
    • ์•”๋ฌต์  ๊ฐ€์ด๋“œ๋ผ์ธ (Tacit guidelines)
  2. AI ์‹œ์Šคํ…œ์ด ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ๊ตฌํ˜„
    • ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ทœ์น™: ์‹คํ–‰ ๊ฐ€๋Šฅ ์ฝ”๋“œ
    • ๋งฅ๋ฝ ์›์น™: LLM ํ”„๋กฌํ”„ํŠธ ๋˜๋Š” ๊ฒ€์ƒ‰ ๊ธฐ๋ฐ˜ ํ†ตํ•ฉ
  3. ์ „๋ฌธ๊ฐ€ ๊ฐ๋… ์—†์ด ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ํ’ˆ์งˆ ์œ ์ง€

4๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ:

graph TD
    A[1. ์ „๋ฌธ๊ฐ€ ์ธํ„ฐ๋ทฐ] --> B[2. ๊ทœ์น™ ๊ตฌํ˜„]
    B --> C[์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ทœ์น™: Python ์Šคํฌ๋ฆฝํŠธ]
    B --> D[๋งฅ๋ฝ ์›์น™: LLM ํ”„๋กฌํ”„ํŠธ ์ž„๋ฒ ๋”ฉ]
    C --> E[3. ๊ฒฐ๊ณผ ํ…Œ์ŠคํŠธ]
    D --> E
    E --> F[4. ๋ฐœ๊ฒฌ ์‚ฌํ•ญ ๊ธฐ๋ฐ˜ ๋ฐ˜๋ณต]

์‹ค๋ฌด ์ ์šฉ ํฌ์ธํŠธ

1. ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ (Physics-agnostic) ์„ค๊ณ„

[!example] ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์†Œํ”„ํŠธ์›จ์–ด์˜ ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ
– CFD (Computational Fluid Dynamics) ์‹œ๋ฎฌ๋ ˆ์ด์…˜
– ์••๋ ฅ ๊ฐ•ํ•˜ (Pressure drop) ๋ถ„์„
– ์‘๋ ฅ (Stress) ๋ถ„์„ ์—ฐ๊ตฌ

์˜๋ฏธ: ๋™์ผํ•œ ํ›„์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•๋ก ์ด ๋‹ค๋ฅธ ๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์ผ๊ด€๋˜๊ฒŒ ์ ์šฉ ๊ฐ€๋Šฅ

2. ์ž์œจ์  ์—์ด์ „ํŠธ ๋™์ž‘

์‚ฌ์šฉ์ž๊ฐ€ ๋‹จ์ˆœ ํ”„๋กฌํ”„ํŠธ๋กœ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ์‹œ๊ฐํ™” ์ƒ์„ฑ ๊ฐ€๋Šฅ:
– ์ „๋ฌธ๊ฐ€ ๋ณ‘๋ชฉ ์™„ํ™”
– ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ๊ฒฐ๊ณผ ๋‹ฌ์„ฑ
– ์ „๋ฌธ๊ฐ€๊ฐ€ ๊ณ ์œ ํ•œ ์ „๋ฌธ์„ฑ์ด ํ•„์š”ํ•œ ์ž‘์—…์— ์ง‘์ค‘ ๊ฐ€๋Šฅ

3. ์ง€์‹ ์ด์ „ ํ™•์žฅ์„ฑ

  • ์ฒด๊ณ„์ ์ธ ์ง€์‹ ์ฝ”๋””ํ”ผ์ผ€์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ
  • ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ์˜ ์ง€์‹ ์ด์ „ ๊ฐ€๋Šฅ
  • ์กฐ์ง ๋‚ด ์ง€์‹ ๊ด€๋ฆฌ ๊ตฌ์ถ•์— ํ™œ์šฉ

7. ํ•œ๊ณ„ ๋ฐ ์ œ์–ธ

์ œํ•œ์  (Limitations)

  1. ํ‰๊ฐ€ ๋ฒ”์œ„
    • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”์— ๊ตญํ•œ
    • ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์—์„œ์˜ ์ผ๋ฐ˜ํ™”๋Š” ์ถ”๊ฐ€ ์—ฐ๊ตฌ ํ•„์š”
  2. ์ „๋ฌธ๊ฐ€ ์ˆ˜
    • 2๋ช…์˜ ์ „๋ฌธ๊ฐ€๋งŒ ์ฐธ์—ฌ
    • ๋‹ค์–‘ํ•œ ๊ด€์ ์˜ ์ „๋ฌธ๊ฐ€ ์ถ”๊ฐ€๋กœ ํ”„๋ ˆ์ž„์›Œํฌ ๊ฐ•ํ™” ๊ฐ€๋Šฅ
  3. ํ˜„์žฌ ๊ตฌํ˜„์˜ ํ•œ๊ณ„
    • ์ด์ƒ๊ฐ’(Outlier) ๊ฐ์ง€ ๋Šฅ๋ ฅ ๋ฏธ๋ณด์œ 
    • ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ๋””์ž์ธ ์„ธํŠธ ์„ ํƒ ํ†ต์ฐฐ๋ ฅ ๋ถ€์กฑ
    • ์ผ๋ถ€ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๋ณด๋‹ค ๋œ ์ •๊ตํ•œ ๊ฒฐ๊ณผ
  4. ์ฝ”๋“œ ํ’ˆ์งˆ ํ‰๊ฐ€ ์ œ์™ธ
    • ์ฝ”๋“œ ๋ณด์•ˆ: ์‹œ๊ฐํ™” ์Šคํฌ๋ฆฝํŠธ๋ผ ๋ณด์•ˆ ์œ„ํ—˜ ์—†์Œ
    • ์†Œํ”„ํŠธ์›จ์–ด ์‹ ๋ขฐ์„ฑ: ๋‹จ์ผ ์‹คํ–‰ ์Šคํฌ๋ฆฝํŠธ๋ผ ์ง€์†์  ์ž‘๋™ ํ•„์š” ์—†์Œ
    • ์ฝ”๋“œ ์œ ์ง€๋ณด์ˆ˜์„ฑ: ๋‹จ์ผ ์‚ฌ์šฉ ์„ค๊ณ„๋ผ ํ‰๊ฐ€ ์ œ์™ธ (์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅ)

ํƒ€๋‹น์„ฑ ์œ„ํ˜‘ (Threats to Validity)

์œ„ํ˜‘ ์œ ํ˜• ์„ค๋ช… ์™„ํ™” ์กฐ์น˜
๋‚ด๋ถ€ ํƒ€๋‹น์„ฑ ์—ฐ๊ตฌ ์ ˆ์ฐจ, ์ธํ„ฐ๋ทฐ ๋ถ„์„ ํŽธํ–ฅ ๊ฐ€๋Šฅ์„ฑ – ์ „๋ฌธ๊ฐ€ ์ง์ ‘ ๊ทœ์น™ ์ œ๊ณต (ํ•ด์„์  ๋ถ„์„ ๋ฐฐ์ œ)
– ๋‹ค์–‘ํ•œ ๋ฐฐ๊ฒฝ ํ‰๊ฐ€์ž 12๋ช… ์ฐธ์—ฌ
– Claude 4.5 Sonnet์œผ๋กœ ํ‰๊ฐ€ ์‚ผ๊ฐ์ธก์ •
๊ตฌ์„ฑ ํƒ€๋‹น์„ฑ ํ‰๊ฐ€ ์ง€ํ‘œ๊ฐ€ ์ธก์ •ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์„ ๋ฐ˜์˜ํ•˜๋Š”์ง€ – ๋ช…ํ™•ํ•œ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ (YetiลŸtiren et al., 2023)
– ์ •๋Ÿ‰์  ์ด์ง„ ์ฑ„์  ๋ฐฉ์‹
– 3๊ฐœ ํ•ต์‹ฌ ์ฐจ์› ํ‰๊ฐ€
์™ธ๋ถ€ ํƒ€๋‹น์„ฑ ๋‹ค๋ฅธ ํ™˜๊ฒฝ, ๋„๋ฉ”์ธ์œผ๋กœ์˜ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ์„ฑ – 3๊ฐœ์˜ ๊ธฐ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅธ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ ๋„๋ฉ”์ธ ๊ฒ€์ฆ
– ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ ๊ทœ์น™ ์„ค๊ณ„
– ํ”„๋ ˆ์ž„์›Œํฌ์˜ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ

๋ฒ”์œ„ ๋ฐ ์™ธ๋ถ€ ํƒ€๋‹น์„ฑ (Scope and External Validity)

์ ์šฉ ๊ฐ€๋Šฅ์„ฑ:
– ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํŠน์ • ๋„๋ฉ”์ธ์— ๊ตญํ•œ๋˜์ง€ ์•Š์Œ
– ์ „๋ฌธ๊ฐ€ ์ง€์‹์ด ์ฝ”๋””ํŒŒ์ด ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ์˜์—ญ์— ์ ์šฉ ๊ฐ€๋Šฅ

์ œ์•ฝ:
– ํ˜„์žฌ ๊ฒ€์ฆ์€ ์—”์ง€๋‹ˆ์–ด๋ง ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์ดˆ์ 
– ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์—์„œ์˜ ์ ์šฉ์€ ์ถ”๊ฐ€ ๊ฒ€์ฆ ํ•„์š”

๋ฏธ๋ž˜ ์—ฐ๊ตฌ (Future Work)

  1. ์ด์ƒ๊ฐ’ ๊ฐ์ง€ ๊ธฐ๋Šฅ
    • ์ž๋™ ์ด์ƒ๊ฐ’ ์‹๋ณ„ ๋ฐ ์‹œ๊ฐํ™” ๊ฐ•์กฐ
    • ๋น„์ •์ƒ ํŒจํ„ด ์ž๋™ ๊ฐ์ง€
  2. ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ํ†ต์ฐฐ๋ ฅ ๊ฐ•ํ™”
    • ๋””์ž์ธ ์„ธํŠธ ์„ ํƒ ์ž๋™ํ™”
    • ๋” ๊นŠ์€ ๋ถ„์„์  ํ†ต์ฐฐ ์ œ๊ณต
  3. ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ์˜ ํ™•์žฅ
    • ์˜๋ฃŒ, ๊ธˆ์œต ๋“ฑ ๋‹ค๋ฅธ ๊ณ ๋„ํ™”๋œ ๋„๋ฉ”์ธ ๊ฒ€์ฆ
    • ๋‹ค๋ฅธ ์œ ํ˜•์˜ ์ „๋ฌธ๊ฐ€ ์ง€์‹ ํ†ตํ•ฉ
  4. ์ง€์‹ ๋ฒ ์ด์Šค ํ™•์žฅ
    • ๋” ๋งŽ์€ ์ „๋ฌธ๊ฐ€๋กœ๋ถ€ํ„ฐ ์ง€์‹ ์ˆ˜์ง‘
    • ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ธฐ๋ฐ˜ ์ง€์‹ ๋ฒ ์ด์Šค ๊ตฌ์ถ• ๊ฐ€๋Šฅ์„ฑ
  5. ์‹ค์‹œ๊ฐ„ ํ•™์Šต ๋ฐ ์ ์‘
    • ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ ๊ธฐ๋ฐ˜ ์ž๋™ ๊ฐœ์„ 
    • ๋™์  ๊ทœ์น™ ์—…๋ฐ์ดํŠธ ์‹œ์Šคํ…œ

๐Ÿ“Œ 3๋‹จ๊ณ„: ๋น„ํŒ์  ํ‰๊ฐ€

๋ฐฉ๋ฒ•๋ก ์  ํƒ€๋‹น์„ฑ

๊ฐ•์ 

  1. ์‹ค์ฆ์  ๊ฒ€์ฆ
    • ์‹ค์ œ ์‚ฐ์—… ํ™˜๊ฒฝ (Siemens)์—์„œ์˜ ์ผ€์ด์Šค ์Šคํ„ฐ๋””
    • 12๋ช…์˜ ๋‹ค์–‘ํ•œ ์ „๋ฌธ๊ฐ€ ํ‰๊ฐ€์ž ์ฐธ์—ฌ
    • AI ํ‰๊ฐ€์ž (Claude 4.5 Sonnet)๋กœ ํŽธํ–ฅ ์™„ํ™”
  2. ์ฒ ์ €ํ•œ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ
    • ์ •๋Ÿ‰์  ์ง€ํ‘œ ์‚ฌ์šฉ (์ด์ง„ ์ฑ„์ )
    • ์„ธ ๊ฐ€์ง€ ์ฐจ์›์˜ ์ฝ”๋“œ ํ’ˆ์งˆ ํ‰๊ฐ€ (์œ ํšจ์„ฑ, ์ •ํ™•์„ฑ, ์ถœ๋ ฅ ํ’ˆ์งˆ)
    • YetiลŸtiren et al. (2023)์˜ ๊ฒ€์ฆ๋œ ๋ฐฉ๋ฒ•๋ก  ํ™œ์šฉ
  3. ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ ๊ฒ€์ฆ
    • ์ „๊ธฐํ™”ํ•™, ์ „์ž๊ธฐํ•™, ๊ธฐ๊ณ„๊ณตํ•™ 3๊ฐœ ๋„๋ฉ”์ธ
    • ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ ๊ทœ์น™์˜ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ์„ฑ ์ž…์ฆ
  4. ๋ช…ํ™•ํ•œ ๋น„๊ต ๊ทธ๋ฃน
    • ๊ธฐ์ค€ ์‹œ์Šคํ…œ (LLM+RAG)๊ณผ์˜ ๋น„๊ต
    • ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€ ๊ฒฐ๊ณผ์™€์˜ ๋น„๊ต
    • ๋น„์ „๋ฌธ๊ฐ€ ์‚ฌ์šฉ์ž ์‹œ๋‚˜๋ฆฌ์˜ค ํฌํ•จ

์•ฝ์  ๋ฐ ๊ฐœ์„  ๊ฐ€๋Šฅ์„ฑ

  1. ์ „๋ฌธ๊ฐ€ ์ˆ˜
    • ๋„๋ฉ”์ธ๋‹น 1๋ช…์”ฉ๋งŒ ์ฐธ์—ฌ
    • โ†’ ๋” ๋งŽ์€ ์ „๋ฌธ๊ฐ€๋กœ ๊ทœ์น™ ๊ฒ€์ฆ ํ•„์š”
  2. ํ‰๊ฐ€์ž ํŽธํ–ฅ
    • Siemens ๋‚ด๋ถ€ ํ‰๊ฐ€์ž ํฌํ•จ ๊ฐ€๋Šฅ์„ฑ
    • โ†’ ์™ธ๋ถ€ ๋…๋ฆฝ ํ‰๊ฐ€์ž ์ถ”๊ฐ€ ํ•„์š”
  3. ์žฅ๊ธฐ์  ํšจ๊ณผ ๋ฏธ์ธก์ •
    • ๋‹จ์ผ ์‹คํ–‰ ๊ฒฐ๊ณผ๋งŒ ํ‰๊ฐ€
    • โ†’ ์žฅ๊ธฐ์  ์‚ฌ์šฉ, ํ•™์Šต ๊ณก์„ , ์‚ฌ์šฉ์ž ๋งŒ์กฑ๋„ ํ‰๊ฐ€ ํ•„์š”

๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ

๊ธ์ •์  ์š”์†Œ

  1. ๋ช…ํ™•ํ•œ ์—ฐ๊ตฌ ์งˆ๋ฌธ
    • RQ๊ฐ€ ๋ช…์‹œ์ ์ด๊ณ  ์ธก์ • ๊ฐ€๋Šฅํ•จ
    • ๊ฒฐ๊ณผ๊ฐ€ RQ์— ์ง์ ‘ ๋‹ต๋ณ€ ์ œ๊ณต
  2. ์ผ๊ด€๋œ ์ด๋ก ์  ํ‹€
    • AI ์—์ด์ „ํŠธ 4๊ฐ€์ง€ ์†์„ฑ (Autonomy, Reactivity, Proactivity, Social Ability)์ด ์‹ค์ œ ๊ตฌํ˜„์— ๋ฐ˜์˜
    • ์ง€์‹์˜ ๋‘ ๊ฐ€์ง€ ์œ ํ˜• (๋ช…์‹œ์  vs ์•”๋ฌต์ )์ด ๊ตฌํ˜„ ๋ฐฉ์‹์— ์ผ๊ด€๋˜๊ฒŒ ์ ์šฉ
  3. ๋…ผ๋ฆฌ์  ํ๋ฆ„
    • ๋ฌธ์ œ โ†’ ํ”„๋ ˆ์ž„์›Œํฌ โ†’ ๊ตฌํ˜„ โ†’ ๊ฒ€์ฆ์œผ๋กœ ์ผ๊ด€๋œ ํ๋ฆ„
    • ๊ฐ ๋‹จ๊ณ„๊ฐ€ ๋‹ค์Œ ๋‹จ๊ณ„์˜ ๊ธฐ๋ฐ˜์ด ๋จ
  4. ๊ฒฐ๊ณผ์™€ ๊ฒฐ๋ก ์˜ ์ผ์น˜
    • 206% ๊ฐœ์„ ์ด “์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ๋‹ฌ์„ฑ” ๊ฒฐ๋ก ๊ณผ ์ผ์น˜
    • ์‹ค์ฆ์  ์ฆ๊ฑฐ๊ฐ€ ๊ธฐ์—ฌ์ ์„ ์ง€์ง€

๊ธฐ์—ฌ๋„ ํ‰๊ฐ€

ํ•™๋ฌธ์  ๊ธฐ์—ฌ

  1. ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ง ํ”„๋ ˆ์ž„์›Œํฌ
    • ์ „๋ฌธ๊ฐ€ ์ง€์‹ ์ฝ”๋””ํ”ผ์ผ€์ด์…˜ ์ฒด๊ณ„์  ์ ‘๊ทผ๋ฒ• ์ œ๊ณต
    • ๋ช…์‹œ์  vs ์•”๋ฌต์  ์ง€์‹ ๊ตฌ๋ถ„ ๋ฐ ํ†ตํ•ฉ ๋ฐฉ๋ฒ•
    • LLM ์ฆ๊ฐ• ์ „๋žต์˜ ์‹ค์ฆ์  ๊ฐ€์ด๋“œ๋ผ์ธ
  2. AI ์—์ด์ „ํŠธ ์•„ํ‚คํ…์ฒ˜
    • ๋‹ค์–‘ํ•œ AI ๊ธฐ์ˆ  (๋ถ„๋ฅ˜๊ธฐ, RAG, ๊ทœ์น™, ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง) ํ†ตํ•ฉ
    • ๋ช…ํ™•ํ•œ ๊ด€์‹ฌ์‚ฌ ๋ถ„๋ฆฌ (Separation of Concerns)
    • ์ฐธ์กฐ ์•„ํ‚คํ…์ฒ˜๋กœ ํ™œ์šฉ ๊ฐ€๋Šฅ
  3. ์‹ค์ฆ์  ์ฆ๊ฑฐ
    • AI ์—์ด์ „ํŠธ์˜ ์‚ฐ์—… ํ™˜๊ฒฝ ์œ ํšจ์„ฑ ์ž…์ฆ
    • 3๊ฐœ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ์„ฑ ์ œ์‹œ
    • ์ธ๊ฐ„ vs AI vs ๊ธฐ์ค€ ์‹œ์Šคํ…œ์˜ ์ฒ ์ €ํ•œ ๋น„๊ต

์‹ค๋ฌด์  ๊ธฐ์—ฌ

  1. ์ „๋ฌธ๊ฐ€ ๋ณ‘๋ชฉ ์™„ํ™”
    • ๋น„์ „๋ฌธ๊ฐ€์˜ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ๊ฒฐ๊ณผ ๋‹ฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ ์ž…์ฆ
    • ์กฐ์ง ๋‚ด ์ง€์‹ ํ™•์žฅ์„ฑ ์ œ๊ณต
  2. ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ ๊ทœ์น™
    • ๋‹ค๋ฅธ ๊ณตํ•™ ๋ถ„์•ผ๋กœ์˜ ์ง€์‹ ์ด์ „ ๊ฐ€๋Šฅ์„ฑ
    • ์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๊ทœ์น™ ๋ฒ ์ด์Šค ๊ตฌ์ถ•
  3. ์‚ฐ์—…์  ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ
    • ์‹ค์ œ Siemens ์†Œํ”„ํŠธ์›จ์–ด ํ™˜๊ฒฝ์—์„œ์˜ ๊ฒ€์ฆ
    • ๋ณต์žกํ•œ ์—”์ง€๋‹ˆ์–ด๋ง ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์†Œํ”„ํŠธ์›จ์–ด์—์˜ ํ†ตํ•ฉ
  4. ์ง€์‹ ๋ฏผ์ฃผํ™”
    • ์กฐ์ง ๋‚ด ์ง€์‹ ์ ‘๊ทผ์„ฑ ๊ฐœ์„ 
    • ์ „๋ฌธ๊ฐ€๊ฐ€ ๊ณ ์œ  ๊ฐ€์น˜ ์ž‘์—…์— ์ง‘์ค‘ ๊ฐ€๋Šฅ

ํ˜์‹ ์„ฑ

  1. ํ†ตํ•ฉ์  ์ ‘๊ทผ
    • ๋‹จ์ผ ๊ธฐ์ˆ (LLM, RAG, ๊ทœ์น™)๋งŒ์œผ๋กœ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์Œ์„ ์ž…์ฆ
    • ๋ณด์™„์  ์ „๋žต์˜ ํ•„์š”์„ฑ ์‹ค์ฆ
  2. ์•”๋ฌต์  ์ง€์‹์˜ ์ฝ”๋””ํ”ผ์ผ€์ด์…˜
    • LLM ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์„ ํ†ตํ•œ ์•”๋ฌต์  ์ง€์‹ ํ†ตํ•ฉ
    • ์ „๋ฌธ๊ฐ€ ํŒ๋‹จ ๊ธฐ๋ฐ˜ ์ง€์‹์˜ ์‹œ์Šคํ…œํ™”
  3. ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ
    • ๋„๋ฉ”์ธ ํŠน์ •์ด ์•„๋‹Œ ์ผ๋ฐ˜ํ™”๋œ ๊ทœ์น™ ์„ค๊ณ„
    • ๋‹ค๋ฅธ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ

์‹ค๋ฌด ์ ์šฉ ํฌ์ธํŠธ

์กฐ์ง ๋‚ด ์ ์šฉ ์‹œ ๊ณ ๋ ค์‚ฌํ•ญ

  1. ์ „๋ฌธ๊ฐ€ ์‹๋ณ„ ๋ฐ ์ฐธ์—ฌ
    • ๋ช…์‹œ์  ๊ทœ์น™๊ณผ ์•”๋ฌต์  ์›์น™ ๋ชจ๋‘ ์บก์ฒ˜ ๊ฐ€๋Šฅํ•œ ์ „๋ฌธ๊ฐ€ ์„ ์ •
    • ์ฒด๊ณ„์ ์ธ ์ธํ„ฐ๋ทฐ ํ”„๋กœ์„ธ์Šค ์ค€๋น„
  2. ์ง€์‹ ๋ถ„๋ฅ˜ ๋ฐ ๊ตฌ์กฐํ™”
    • ๋ช…์‹œ์  ์ ˆ์ฐจ์  ๊ทœ์น™ โ†’ Python ์Šคํฌ๋ฆฝํŠธ๋กœ ๋ณ€ํ™˜
    • ์•”๋ฌต์  ์„ค๊ณ„ ์›์น™ โ†’ LLM ํ”„๋กฌํ”„ํŠธ์— ์ž„๋ฒ ๋“œ
  3. ํ”„๋ ˆ์ž„์›Œํฌ ์ ์šฉ ๋‹จ๊ณ„
    • 1๋‹จ๊ณ„: ์ „๋ฌธ๊ฐ€ ์ธํ„ฐ๋ทฐ
    • 2๋‹จ๊ณ„: ๊ทœ์น™ ๊ตฌํ˜„ (์ฝ”๋“œ + ํ”„๋กฌํ”„ํŠธ)
    • 3๋‹จ๊ณ„: ๊ฒฐ๊ณผ ํ…Œ์ŠคํŠธ
    • 4๋‹จ๊ณ„: ๋ฐ˜๋ณต ๊ฐœ์„ 
  4. ํ‰๊ฐ€ ๋ฐ ๊ฒ€์ฆ
    • ๋‹ค์–‘ํ•œ ๋ฐฐ๊ฒฝ ํ‰๊ฐ€์ž ์ฐธ์—ฌ
    • ์ •๋Ÿ‰์  ์ง€ํ‘œ ์„ค์ •
    • AI ํ‰๊ฐ€์ž๋กœ ํŽธํ–ฅ ์™„ํ™”

๊ธฐ์ˆ ์  ๊ตฌํ˜„ ๊ณ ๋ ค์‚ฌํ•ญ

  1. ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜
    • ๋ถ„๋ฅ˜๊ธฐ: ์š”์ฒญ ์œ ํ˜• ์นดํ…Œ๊ณ ๋ฆฌํ™”
    • RAG ์‹œ์Šคํ…œ: ๋„๋ฉ”์ธ๋ณ„ ์ง€์‹ ๋ฒ ์ด์Šค
    • ์ฝ”๋””ํŒŒ์ด๋“œ ๊ทœ์น™: ์‹คํ–‰ ๊ฐ€๋Šฅ ํ•จ์ˆ˜
    • ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ๊ธฐ: ์‚ฌ์šฉ์ž ์š”๊ตฌ์‚ฌํ•ญ + ๋„๋ฉ”์ธ ์ง€์‹ + ์‹œ๊ฐํ™” ์›์น™ ํ†ตํ•ฉ
  2. ์ฝ”๋“œ ํ’ˆ์งˆ ๋ณด์žฅ
    • ์œ ํšจ์„ฑ: ๋ฌธ๋ฒ•์  ์ •ํ™•์„ฑ, ๋Ÿฐํƒ€์ž„ ์˜ค๋ฅ˜ ์—†์Œ
    • ์ •ํ™•์„ฑ: ์˜๋„ํ•œ ๋Œ€๋กœ ์ˆ˜ํ–‰
    • ์ถœ๋ ฅ ํ’ˆ์งˆ: ์ ์ ˆํ•œ ์ฐจ์›, ์‹œ๊ฐ์  ์ธ์ฝ”๋”ฉ, ์ค‘์š” ์ •๋ณด ๊ฐ•์กฐ
  3. ํ™•์žฅ์„ฑ ๊ณ ๋ ค
    • ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ ๊ทœ์น™ ์„ค๊ณ„
    • ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ์˜ ์ง€์‹ ์ด์ „ ๊ฐ€๋Šฅ์„ฑ
    • ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ธฐ๋ฐ˜ ์ง€์‹ ๋ฒ ์ด์Šค ๊ตฌ์ถ• ๊ฐ€๋Šฅ์„ฑ

ROI ๋ฐ ๋น„์šฉ ํšจ๊ณผ

  1. ์ „๋ฌธ๊ฐ€ ์‹œ๊ฐ„ ์ ˆ๊ฐ
    • ๋ฐ˜๋ณต์ ์ธ ๊ฐ€์ด๋“œ ์ž‘์—… ์ž๋™ํ™”
    • ์ „๋ฌธ๊ฐ€๊ฐ€ ๊ณ ์œ  ๊ฐ€์น˜ ์ž‘์—…์— ์ง‘์ค‘ ๊ฐ€๋Šฅ
  2. ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ
    • ๋น„์ „๋ฌธ๊ฐ€์˜ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ๊ฒฐ๊ณผ ๋‹ฌ์„ฑ
    • ์˜์‚ฌ๊ฒฐ์ • ์†๋„ ํ–ฅ์ƒ
  3. ์ง€์‹ ์ž์‚ฐํ™”
    • ์ „๋ฌธ๊ฐ€ ์ง€์‹์˜ ์‹œ์Šคํ…œ์  ์บก์ฒ˜
    • ์กฐ์ง ๋‚ด ์ง€์‹ ๊ด€๋ฆฌ ๊ตฌ์ถ•

์ž ์žฌ์  ๋ฆฌ์Šคํฌ ๋ฐ ์™„ํ™”

๋ฆฌ์Šคํฌ ์„ค๋ช… ์™„ํ™” ์กฐ์น˜
์ „๋ฌธ๊ฐ€ ์˜์กด์„ฑ ์†Œ์ˆ˜ ์ „๋ฌธ๊ฐ€์— ์˜์กด – ๋‹ค์–‘ํ•œ ์ „๋ฌธ๊ฐ€ ์ฐธ์—ฌ
– ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ธฐ๋ฐ˜ ์ง€์‹ ๋ฒ ์ด์Šค ๊ตฌ์ถ•
๊ทœ์น™์˜ ์ •์  ์„ฑ๊ฒฉ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ๊ทœ์น™ ๋…ธํ›„ํ™” – ๋™์  ๊ทœ์น™ ์—…๋ฐ์ดํŠธ ์‹œ์Šคํ…œ
– ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ ๊ธฐ๋ฐ˜ ๊ฐœ์„ 
๋„๋ฉ”์ธ ํŠนํ™”์„ฑ ํŠน์ • ๋„๋ฉ”์ธ์— ๊ณผ๋„ ์˜์กด ๊ฐ€๋Šฅ์„ฑ – ๋ฌผ๋ฆฌ์  ๋ฌด๊ด€์„ฑ ๊ทœ์น™ ์„ค๊ณ„
– ๋‹ค๋ฅธ ๋„๋ฉ”์ธ ๊ฒ€์ฆ
AI ์„ฑ๋Šฅ ํŽธํ–ฅ ํŠน์ • ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜ – ๋‹ค์–‘ํ•œ ํ…Œ์ŠคํŠธ ์ผ€์ด์Šค
– ์ง€์†์  ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ ๊ฐœ์„ 

References

  1. Ancker, J. S., Senathirajah, Y., Kukafka, R., & Starren, J. B. (2006). Design features of graphs in health risk communication: A systematic review. Journal of the American Medical Informatics Association.
  2. Biselli, A., Stoyanov, S., & Nocera, A. (2025). Misleading visualizations in the era of disinformation. Journal of Information Science.
  3. Choe, E., et al. (2024). The visual analysis of high-dimensional data in engineering simulations. IEEE Transactions on Visualization and Computer Graphics.
  4. Deng, Y., et al. (2024). Defining AI agents: A comprehensive framework. Proceedings of the AAAI Conference on Artificial Intelligence.
  5. Franconeri, S. L., et al. (2021). The science of visual data communication: What works. Psychological Science in the Public Interest.
  6. Grammel, L., et al. (2010). The gap between data visualization and data analysis tools. IEEE Symposium on Visual Languages and Human-Centric Computing.
  7. Hoffman, R. R., et al. (1995). Eliciting knowledge from experts: A tutorial. The Knowledge Engineering Review.
  8. Lin, S., & Thornton, L. (2021). Beauty in data visualization: Trust and comprehension. Journal of Data Visualization.
  9. Rosen, M., et al. (2007). Managing expert bottlenecks in large organizations. Harvard Business Review.
  10. Vรกzquez, M. (2024). Are LLMs ready for generating visualization code? arXiv preprint.
  11. YetiลŸtiren, M., et al. (2023). A framework for evaluating generated code quality. Journal of Software Engineering.
  12. Zhu, X., et al. (2023). LLMs with rules: Empirical evidence of 30% improvement. Proceedings of NeurIPS.
์ž‘์„ฑ์ž

skycave

Follow Me
๋‹ค๋ฅธ ๊ธฐ์‚ฌ
Previous

[AI Paper] ๐Ÿ“„ Gorilla: LLM Connected with Massive APIs

Next

[AI Paper] INFA-Guard: Mitigating Malicious Propagation via Infection-Aware Safeguarding in LLM-Based Multi-Agent Systems

๋Œ“๊ธ€ ์—†์Œ! ์ฒซ ๋Œ“๊ธ€์„ ๋‚จ๊ฒจ๋ณด์„ธ์š”.

๋‹ต๊ธ€ ๋‚จ๊ธฐ๊ธฐ ์‘๋‹ต ์ทจ์†Œ

์ด๋ฉ”์ผ ์ฃผ์†Œ๋Š” ๊ณต๊ฐœ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜ ํ•„๋“œ๋Š” *๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค

์ตœ์‹ ๊ธ€

  • ๐Ÿ“Š ์ผ์ผ ๋‰ด์Šค ๊ฐ์„ฑ ๋ฆฌํฌํŠธ – 2026-01-28
  • AI ์‹œ์Šคํ…œ์˜ ๋ฌธ๋งฅ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰(Contextual Retrieval) | Anthropic
  • “Think” ํˆด: Claude๊ฐ€ ๋ฉˆ์ถฐ์„œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ | Anthropic
  • Claude Code ๋ชจ๋ฒ” ์‚ฌ๋ก€ \ Anthropic
  • ์šฐ๋ฆฌ๊ฐ€ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ ๋ฐฉ๋ฒ•
Copyright 2026 — skycave's Blog. All rights reserved. Blogsy WordPress Theme